
Applications of Trusted Computing in
Pervasive Smart Camera Networks

Thomas Winkler
Pervasive Computing / Institute of Networked

and Embedded Systems (NES)
Lakeside Park B02b

9020 Klagenfurt, Austria

thomas.winkler@uni-klu.ac.at

Bernhard Rinner
Pervasive Computing / Institute of Networked

and Embedded Systems (NES)
Lakeside Park B02b

9020 Klagenfurt, Austria

bernhard.rinner@uni-klu.ac.at

ABSTRACT

Pervasive Smart Cameras are embedded computer vision
systems bringing together the research areas of smart cam-
eras and wireless sensor networks. Besides traditional areas
like video surveillance or traffic monitoring, small, cheap and
powerful camera systems open a wide range of potential new
applications including assisted living, home automation or
entertainment. At the same time, widespread deployment
of cameras introduces several security challenges. Using
wireless networking and being mounted at remote locations,
smart cameras are an attractive target for attackers. An-
other issue of crucial importance when it comes to the ac-
ceptance of camera systems is user privacy. In this work we
explore the use of Trusted Computing concepts to enhance
security of an experimental smart camera system. Addition-
ally, we discuss required and achievable performance based
on evaluations on our prototype platform.

1. INTRODUCTION
Cameras are present in a variety of situations of our life.

In traffic monitoring applications they are used to detect
traffic jams or accidents [3]. Video surveillance is performed
in public places like airports or train stations. Even in pri-
vate environments, applications like assisted living [9] are
emerging where cameras are used to monitor the daily life
of individuals.

With advances in technology, cameras have become smart
and ubiquitous [14, 13]. By definition, a smart camera is an
embedded system that consists of an image sensor, a pro-
cessing and a communication unit. Captured image data is
analyzed on the camera and only the results of this analysis
are delivered to a control station. This can be statistical in-
formation like the number of persons in a room or an alarm
if some unusual event like a fallen person or unattended
luggage is detected. While smart cameras are designed to
typically deliver events instead of video streams, there still
is the requirement to occasionally transmit images. This

Copyright ACM, 2009. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in the Proceeding of the
Embedded Systems Week (ESWEEK) – Wokshop on Embedded System
Security (WESS).
WESS’09, October 15, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-700-4/09/10 ...$10.00.

way, operating personnel can e.g. more accurately evaluate
a reported event before taking further action.

When it comes to system security and privacy of mon-
itored individuals, smart camera systems raise new chal-
lenges. Contrary to conventional systems, smart cameras
come with a relatively large software stack. This typically
includes a flexible and powerful embedded operating system
like uClinux as well as a variety of applications running on
top of it. Additionally, more and more cameras are equipped
with wireless networking interfaces. These facts make them
attractive targets for potential attackers. The operator of a
camera system has high interest to gain assurance that the
software stack of the camera was not modified. Addition-
ally, in applications like law enforcement, proof might be
required that certain information actually originates from a
specific camera and was captured at a certain point in time.
In situations where the camera is tasked to store or deliver
images, monitored individuals have a high interest that their
privacy is protected.

In this work we address selected security and privacy is-
sues in the context of smart camera systems by exploring the
possibility of adding a hardware security chip to our proto-
type system. Specifically, we discuss how Trusted Comput-
ing (TC) and a Trusted Platform Module (TPM) could be
used to record and report the state of a platform, provide
evidence that data is coming from a certain camera and en-
sure that privacy relevant information only is accessible by
authorized persons. Additionally, we evaluate the suitability
of existing TPM solutions in the context of our application
domain.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work on security and privacy aspects
in video surveillance as well as approaches to use TPMs in
the domain of embedded systems. It is followed by a brief
overview of Trusted Computing fundamentals in section 3.
Subsequently, section 4 outlines the architecture of our pro-
totype system including the camera hard- and software as
well as the monitoring station. Section 5 presents how se-
lected TC concepts can be applied to smart cameras. A
discussion how they can be implemented in an embedded
system together with evaluation results is presented in sec-
tion 6. Section 7 concludes the paper and outlines potential
future work.

2. RELATED WORK
Aspects of privacy and security in camera applications

have been addressed in a number of related publications

which are covered in section 2.1. Subsequently, section 2.2
concentrates on related work that explores the applicability
of Trusted Computing in embedded systems.

2.1 Security and Privacy in Camera Networks
Serpanos et al. [18] provide an extensive discussion of se-

curity and privacy related issues in smart camera networks.
They discuss the need for confidentiality, integrity and fresh-
ness of data transmitted between nodes. In cases where im-
ages are transmitted, privacy of observed persons is a critical
issue as it not only involves protection of sensitive informa-
tion against external attackers but also against legitimate
system operators. To achieve this goal, relevant parts of the
images need to be recognized and appropriately encrypted.

Senior et al.[17] discuss the meaning of privacy in the con-
text of video surveillance and conclude that there is no gen-
eral notion of privacy but what is acceptable depends on the
individual person and also on cultural attitudes. They con-
tinue with a discussion of critical aspects of a surveillance
system including what data is available and in what form
(e.g. raw images vs. metadata), who has access to data and
in what form (e.g. plain vs. encrypted) and how long it is
stored. Finally, the authors present a concept for a system
that preserves user privacy by pre-processing videos on the
camera and a layered approach for granting access to the
different types of information produced by the camera.

PrivacyCam [4] by Chattopadhyay et al. is a camera sys-
tem based on a Blackfin DSP clocked at 400MHz, 32MB
of SDRAM and an Omnivision OV7660 color CMOS sensor.
uClinux is used as operating system. Regions of interest
are identified based on a background subtraction model and
resulting regions are encrypted using an AES session key.

Dufaux et al. [8] also follow the approach of scrambling re-
gions of interest. They however do not rely on conventional
cryptographic algorithms but integrate the content scram-
bling into the MPEG-4 and MJPEG encoding processes.

A similar approach is discussed by Baaziz et al. [2] where
in a first step motion detection is performed followed by
content scrambling. To ensure data integrity, an additional
watermark is embedded in the image which allows to de-
tect manipulation of image data. Limited reconstruction of
manipulated image regions is possible due to redundancy
introduced by the watermark.

Tansuriyavong et al. [21] present a system used in an
office scenario that blanks the silhouettes of persons. Ad-
ditionally, the system integrates face recognition to identify
previously registered persons. The system can be configured
what information should be disclosed - full images, silhou-
ettes, names or any combination of that.

2.2 Embedded Trusted Computing
The Low Pin Count (LPC) bus that is used to connect

TPMs to the PC platform, typically is not available on em-
bedded systems. Some manufacturers additionally equip
their TPMs with a serial, two-wire interface making them
suitable for embedded systems. Grossmann et al. [10] demon-
strate the use of an Atmel AT97SC3203S TPM together with
an MSP430 microcontroller from Texas Instruments in the
context of a teletherapeutic application. In this scenario,
the software state of the embedded device is attested using
the TPM before sensitive information is transmitted. The
authors also give measurement results for runtime and en-
ergy consumption for selected TPM commands. The TPM

Quote operation e.g. is measured to take 800ms during
which a current of 39mA (@ 3.3V) is drawn.

For secFleck, Shih et al. [11] mount an Atmel TPM on an
extension board for the Fleck mote platform which is pow-
ered by an Atmel Atmega128 running at 8MHz. Apparently,
the TPM is not used for platform attestation but only as
random number generator, for RSA en- and decryption and
signature creation and verification. The authors claim that
the public TPM key is used in these operations which how-
ever is not directly possible with the TPM’s Endorsement
Key (EK). No details are provided on key management or
key hierarchy. secFleck is also used by Dua et al. [6] to en-
hance security of a participatory sensing application where
users sense their local environment and make these mea-
surements available to other users. The TPM is used to
attest the integrity of the users platforms. In the proposed
protocol the PCRs are signed directly using the EK. Again,
this violates the TPM specification and therefore should not
be possible with a compliant TPM chip. In another work
by the same authors [7], a similar approach for trustworthy
sensing is discussed. A peripheral platform equipped with
a TPM, sensors and bluetooth is used for sensing. A sec-
ond platform, e.g. a mobile phone, can query the device
via bluetooth and in turn receives sensed data signed by the
peripherals TPM. Details on how data is verified or how a
verifier gains the assurance that data is coming from a TPM
protected platform are not discussed in this work.

Aaraj et al. [1] evaluate the performance of a pure soft-
ware TPM on an embedded platform (Xscale PXA-250 at
400MHz and 32MB RAM). They present runtime mea-
surements for a wide range of TPM commands including
TPM Quote (1239ms with a 2048 bit RSA key) and TPM
Sign (902ms for an RSA key length of 2048 bits; 343ms for
an RSA key length of 1024 bits). Based on these results,
the authors replaced RSA with elliptic curve cryptography
(ECC) which reduced the time for TPM Quote to 381ms
(key length 224 bits) and TPM Sign to 191ms (data size
20Bytes, key length 224 bits). On average, execution time
was reduced by a factor of 6.5. Note however that ECC is
not supported by the current TPM specification but may be
adopted in future versions. Based on detailed performance
analysis, the authors implemented special hardware instruc-
tions to accelerate ECC. For this, they used the Xtensa
platform from Tensilica with the base processor operating
at 320MHz. On this platform the unoptimized TPM Quote
operation using a 224 bit ECC key takes 169.81ms. With
hardware optimizations this time was reduced to 84.154ms
on an uni-core system and to 30.70ms on a six-core system.

Other researchers like Dietrich and Winter [25, 5] also
evaluate the possibility of using software based TPM im-
plementations for embedded systems. Many embedded sys-
tems already come with integrated security functionality like
ARM TrustZone that can be used to develop software TPM
solutions. The same authors explore the use of Smart Cards
or SIM cards as found in mobile phones to implement TPM
functionality. Research on software TPM implementations
is still in early stages but preliminary results suggest that
they might be able to provide security levels similar to those
of hardware TPMs.

3. TRUSTED COMPUTING OVERVIEW
Trusted Computing (TC) is an industry initiative headed

by the Trusted Computing Group (TCG). The main output

of the group is a set of specifications for a hardware chip –
the Trusted Platform Module (TPM) [22] – and surrounding
software infrastructure like the TCG Software Stack (TSS)
[23]. The TPM, as shown in figure 1, typically is imple-
mented as a microcontroller (execution engine) with accel-
erators for RSA and SHA1. Additionally, the TPM provides
a random number generator as well as limited amount of
volatile and non-volatile memory. With an Opt-In process,
users can choose if they want to make use of the TPM chip.

���������	

ABCDE�

����F	��

�	�	��C���

�����

���

��	��C����

�����	

E�A
���D����C��	�

�	����

����C��	�

�	����

!
�

Figure 1: A Trusted Platform Module (TPM) con-
sists of shielded locations (memory) and protected
capabilities which are functions that operate on
shielded locations.

RSA keys can be generated for different purposes like data
encryption or signing. Upon creation, keys can be declared
migratable or not. While migratable keys can be transferred
to a different TPM, non-migratable keys can not. Regardless
of key type and migratability, a private TPM key can never
be extracted from the chip as plaintext but only in encrypted
form. By definition, every key is required to have a parent
key that is used to encrypt the key when it has to be swapped
out of the TPM due to limited internal memory. At the root
of this key hierarchy is the Storage Root Key (SRK) which
never leaves the TPM. TC defines three Roots of Trust:

Root of Trust for Measurement (RTM). In TC, mea-
suring is the process of computing the SHA1 hash of
an application binary before it is executed. Starting
from an immutable part of the BIOS, a chain of trust
is established where each component in the chain is
measured before control is passed to it. The measure-
ments are stored inside the TPM in memory regions
called Platform Configuration Registers (PCRs). As
the amount of memory inside the TPM is limited, a
special operation called TPM Extend is used when
writing to PCRs:

PCR[i]← SHA1(PCR[i]||measurement).

With the extend operation, the current PCR value is
not overwritten but the new measurement is accumu-
lated with the current PCR value.

Root of Trust for Reporting (RTR). Reporting of the
platform state is called attestation and is done with
the TPM Quote command. As part of that, PCR val-
ues get signed inside the TPM using a key unique to
that TPM. In theory, this key could be the Endorse-
ment Key (EK) which is inserted into the TPM upon
manufacturing. For privacy reasons however, not di-
rectly the EK but alias keys are used. They are called
Attestation Identity Keys (AIKs) and are generated
with the help of an external trusted third party.

Root of Trust for Storage (RTS). The RTS allows to
use the TPM to securely store data. Binding of data
refers to encrypting data with a TPM key and hence
guaranteeing that the data only is accessible by this
specific TPM instance. Sealing of data allows to spec-
ify a set of PCR values the data is sealed to. As with
binding, the unsealing can only be done by the specific
TPM instance that holds the private sealing key. Ad-
ditionally, the plaintext is only released if the current
PCR values match those specified upon sealing.

4. SYSTEM ARCHITECTURE
Before discussing how Trusted Computing concepts can be

applied in smart camera applications, we are going to outline
the building blocks and architecture of a prototypical camera
network. In the context of this work, we differentiate two
major components: (1) The individual camera nodes and (2)
the back office where the camera network is controlled and
the information from the cameras is collected and evaluated.

4.1 Camera Prototype
For experimentation and evaluation purposes we have built

an embedded, low-power camera system based on off-the-
shelf components. To simplify application development, we
implemented a custom middleware system that allows to
compose image processing applications from simple, re-usable
components.

4.1.1 Hardware Architecture

Figure 2 shows our pervasive smart camera platform. The
platform is based on the BeagleBoard1 equipped with an
OMAP 3530 processor from Texas Instruments. The pro-
cessor is based on an ARM Cortex-A8 clocked at 480MHz
and an additional TMS320C64x+ digital signal processor
running at 430MHz.

Figure 2: A Pervasive Smart Camera prototype with
an embedded processing board, a webcam, an 802.11
radio and a SunSPOT for 802.15.4 connectivity.

The system provides 128MB RAM and 256MB NAND
flash. Peripherals can be attached via USB, I2C, SPI, DVI
as well as stereo in/out. In our setup, USB is used to con-
nect a Logitech QuickCam S5500 (color, VGA), an RA-Link
RA-2571 802.11b/g WiFi adapter as well as a SunSPOT
[19] mote used for 802.15.4 wireless connectivity. For de-
velopment and debugging purposes, the nodes additionally
are equipped with USB to Ethernet adapters. As operating
system a Debian GNU/Linux distribution compiled for the
ARM platform and an OMAP specific kernel are used.

1
BeagleBoard Website: http://www.beagleboard.org (Aug. 2009)

In visual sensor networks, power consumption is an impor-
tant aspect. WiFi allows us to occasionally transmit video
streams which can be useful to inspect and evaluate events
reported by the camera network. During normal operation
however, where only small amounts of data are exchanged
between cameras for control and coordination, WiFi is too
power intensive. For that reason, in [24] we have proposed
the approach of equipping our cameras with an additional
802.15.4 radio. The resulting dual radio network allows us
to trade communication performance for power consumption
based on the actual requirements of the application.

Our prototype system currently is not equipped with a
hardware TPM. To still be able to evaluate the concepts
proposed in this paper, we are using the TPM emulator by
Strasser et al. [20]. The camera’s TPM subsequently is
called TPMC .

4.1.2 Camera Software Framework

To simplify application development and to allow re-use of
components, a software framework has been designed that
supports composition of applications from individual blocks
which are instantiated and interconnected at runtime. The
selected approach for the middleware framework follows the
concept of modeling the dataflow between the individual
components.

Conceptually, every block has an output memory where its
results can be accessed by subsequent blocks. To maintain
consistency of stored data, access to the memory is guarded
by a lock that is passed between the producing and con-
suming block similar to a token. Blocks can form chains of
arbitrary length where each pair of blocks is connected by
shared memory and a lock. In our implementation a process-
ing block is realized as an individual operating system pro-
cess expecting well-defined input data and generating output
consumable by subsequent blocks. The shared memories are
implemented as POSIX shared memory synchronized by an
inter-process locking mechanism.

Using separate processes instead of threads for the pro-
cessing blocks offers a number of benefits. Blocks can be
implemented in any programming language as long as there
exists shared memory and locking support. This allows to
e.g. use native code in places where performance is critical
such as low-level data processing and to rely on higher level
languages for e.g. statistics generation, system configuration
and networking aspects. Moreover, separate processes allow
to more easily implement watchdog functionality that mon-
itors individual parts of the processing chain and restarts
blocks as required.

Processing blocks do not directly support multiple con-
sumers for their output memory. To overcome this limita-
tion, a central entity running on every camera node called
the NodeManager is introduced. Once a block has writ-
ten its data to its output memory, it passes the lock to the
NodeManager who in turn gives the lock to all registered
consumer blocks which then can perform parallel read access
to the memory. Once all consumer blocks have returned the
lock, the NodeManager passes the lock for the shared mem-
ory to the producer block which can now fill it with new
data. Note that the producer block does not necessarily
have to be idle while not holding the memory lock but it
can continue with internal processing as required. As shown
in figure 3, there exists exactly one NodeManager per cam-
era. Per definition, the NodeManager not only is responsible

for lock management but also is the only entity that creates
new block instances. This allows it to keep track of running
blocks and their connections. Additionally, the NodeMan-
ager monitors the available system resources and can decide
whether creation of additional blocks is allowed or not.

²����������
�	���
���	�	�	��

�����

������	��

�����

�������

������	�

�����

���	�����

������

���

������

�	����	���	��

�����

������
������

����	��	��

�����

������
������

Figure 3: The NodeManager is responsible for cre-
ating processing chains and lock management. The
output of individual blocks is stored in shared mem-
ory that can be accessed by one or more consumers.
Final results of processing chains typically are made
available as a subscribable service consumed by
other nodes or client applications.

Additional details and performance evaluations for the
camera software framework can be found in [16].

4.2 Back-Office
The back-office is the location from where the camera net-

work is operated and controlled. It is only accessible by
operating personnel with adequate security clearance. In
the back-office, there is dedicated computing infrastructure
that hosts a database storing key material generated during
the camera setup procedure (see section 5.1) as well as data
received as periodic trusted lifebeats from the cameras (de-
scribed in section 5.3). To associate trusted lifebeat events
with UTC time, the control station is assumed to have a re-
liable time source. The control station is also equipped with
a TPM called TPMS . This allows to implement functional-
ity that ensures that images delivered by a camera can only
be accessed at the control station.
Beyond the mentioned requirements, the back-office and its
infrastructure is not further discussed. In the context of this
work it is considered as a secure, trusted facility.

5. TRUSTED COMPUTING INTEGRATION
Before presenting details on how TC can be integrated

into a smart camera network, we are going to discuss the
scope of the presented concepts as well as listing certain
assumptions we have made. The overall system is run by an
operating agency that controls the setup process of cameras
as well as the central control station infrastructure. For

asserting the state of a camera, the operators can rely on
information gathered during the setup process of the camera.
In the current version of the system we do not include the
option for external users to assert the state of a camera. We
therefore currently can also omit a trusted third party or
similar concepts that would be needed in such a case. We
however intend to address this in future work.

Subsequently we are now going to describe the process
how new cameras are prepared for deployment. In section
5.2, we outline a concept for establishment of a chain of trust
on an embedded system. In section 5.3 we describe a trusted
lifebeat process that allows system operators to periodically
check the cameras software state. Thereafter, we describe in
section 5.4 how data delivered by a camera can be checked
for its origin and how privacy sensitive image regions can
be protected ensuring they only are accessible at the control
station (section 5.5).

5.1 Camera Setup
Before camera nodes are deployed, they need to be prop-

erly set up. It is assumed that this setup is done when the
cameras are under full control of the operating personnel.
The main part of the setup procedure is the generation of
TPM keys on the camera and at the control station. All
keys are generated as RSA keys with a length of 2048 bits.
The setup procedure involves the following steps:

TPM Ownership. Calling the TPM TakeOwnership op-
eration of the cameras TPMC sets an owner secret and
generates the Storage Root Key KSRK . The owner se-
cret is not required during normal operation of the
camera and is set to a random value unique to ev-
ery camera. For maintenance operations, the cameras
owner secret is stored in the database of the control
station. Contrary to a desktop PC, there are not mul-
tiple users per camera. Hence, no user storage keys
are generated but all signing, binding and sealing keys
are created with KSRK as their parent.

Identity Key Creation. An Attestation Identity Key ser-
ves as an alias for the Endorsement Key (KEK) and
is used during platform attestation. In the applica-
tion context of a visual sensor network, contrary to
a conventional PC, there are not multiple users per
camera. In fact there is only the system software
running on each camera taking the role of a single
system user. Moreover, all cameras in the network
are uniquely identified and well known by the opera-
tors. Consequently, there is no need for the anonymity
gained by using multiple AIKs in conjunction with a
PrivacyCA. Therefore, only a single Attestation Iden-
tity Key KAIK is generated during setup that serves
for platform attestation and optionally for certifying
other TPM keys. The public portingKAIKpub

is stored
in the back office database together with KEKpub

.

Compared to usage scenarios on a PC with multiple
users, our application context is a lot less generic.
Cameras deployed in the network are known in ad-
vance and there are no human users actively using the
cameras. As user anonymity is not an issue, even KEK

which uniquely identifies a TPM and hence the system
it belongs to, could be used as signature key during
Quote operations. This however is not supported by
the TPM specification.

Note that user anonymity in this context must not
be mistaken with privacy of persons monitored by the
cameras. This aspect is discussed in section 5.5.

Signature Key Creation. For signing data coming from
a camera like events or images, a non-migratable sing-
ing key KSIG is created with KSRK as its parent. Be-
ing non-migratable ensures that the private key can
not leave the cameras TPMC and can only be used in-
side this specific TPMC . This provides assurance that
data signed with this particular key really originates
from this specific camera.

Encryption Key Creation. To ensure privacy of moni-
tored persons, images delivered by the camera to the
control station have to be encrypted. This encryption
can be done for full images or special regions of inter-
est where e.g. motion or faces have been detected.
A non-migratable binding key KBIND1 is created by
the control station’s TPMS . The public portion of this
key, KBIND1pub

, is exported from TPMS and stored
on the camera. Note that the private part of KBIND1

can not be exported from TPMS and therefore, en-
crypted data delivered by the camera can only be de-
crypted at the control station and not e.g. by an inter-
mediate attacker who interferes with the transmission.
To decrypt data bound with KBIND1pub

, the usage se-
cret of the key has to be supplied by the operator. To
avoid that a single person with access to the control
station and knowledge of this usage secret can decrypt
data, additional binding keys can be introduced. This
opens the possibility to use two or more keys to encrypt
privacy sensitive data and hence two or more opera-
tors have to cooperate to decrypt the data. Moreover,
different security levels can be associated with differ-
ent keys. Depending on the security level, only certain
data is accessible. This is explored in section 5.5.

Table 1 summarizes the cryptographic keys generated as
part of the camera setup procedure.

Control Station Camera

Endorsement Key KEKpub
KEK

Storage Root Key - KSRK

Attestation KAIKpub
KAIK

Identity Key
Signature Key KSIGpub

KSIG

Binding Key KBIND1 KBIND1pub

Add. Binding Keys KBIND2...N KBIND2...Npub

Table 1: The key material generated as part of
the camera setup procedure. All keys are non-
migratable, 2048 bit RSA keys. The binding keys
are generated by the control station’s TPMS while
all other keys are generated by the cameras TPMC .
The pub subscript denotes the public RSA key.

5.2 Chain of Trust on Cameras
For this work, we assume there is a hardware TPM or

a software TPM with similar security and usage character-
istics available on the cameras. However, as mentioned in
section 4.1.1 our camera prototype is not equipped with such
a TPM solution. For the implementation of application level
TPM usage we therefore use the TPM emulator [20]. With

this setup, boot up measurements and the establishment of
a chain of trust can not be fully implemented. In this section
we nevertheless outline the concepts and individual steps re-
quired for trusted boot of a camera node.
It is assumed that an immutable Root of Trust for Measure-
ment (RTM) is available on the system. This RTM measures
the uBoot bootloader which then measures (1) the Linux
kernel, (2) the kernel command line and (3) the basic soft-
ware image. The basic software image, a Linux root file
system, is implemented as read-only, compressed squashfs
file system. This file-system includes system libraries, the
basic camera software framework including the NodeMan-
ager, required image processing libraries and the TrouSerS
[12] TCG software stack. After measuring these three com-
ponents, the bootloader passes control to the Linux kernel.
Contrary to our approach, on a generic PC platform mea-
suring the entire root file-system typically is not an option
for two reasons: (1) The root file-system is too large to be
completely measured and (2) the measurement is of little
value because the file-system is not read-only and binaries
can get modified after being measured. With the Integrity
Measurement Architecture [15], a Linux kernel extension is
available that adds functionality to measure every binary
executed by the system. In case of an embedded system
however, root file-systems often are small in size (a few to
a few dozens of MB) and write access to the file-system is
not required. These characteristics allow us to measure all
major components while only generating a very small set of
PCR values. Contrary to a general system, this small set
can easily be validated.

#��

��������	
����

��������#��������

�����������������

����������

�������

������������

������������������

����� ����!����

�����"�������$��

���������$�����%�

���������������������������������&�������������

Figure 4: The camera’s chain of trust starts from
a static Root of Trust for Measurement and is ex-
tended to the bootloader, the Linux kernel and its
command line and the read-only root file-system.

As outlined in section 4.1.2, the NodeManager is a central
component on every camera. It allows to start applications
consisting of multiple independent blocks forming an image
processing chain. Measuring the root file-system allows a
verifier to get information about the software base available
on the platform but it does not provide information which
image processing tasks are running on the platform. To fa-
cilitate that, the NodeManager measures started processing
blocks into predefined PCRs. The description that defines
which blocks are started, what their parameters are and how
they are interconnected is also measured. This configura-
tion, together with the processing blocks defines the actual
behavior of the camera. By measuring these components

separately, a verifier can not only get information on the
software base but also gain an insight which image process-
ing tasks actually are executed by the camera.

5.3 Trusted Lifebeat
The main purpose of a lifebeat is to determine the state of

a system based on the periodic transmission of status mes-
sages. If a status message is not received for a predefined
amount of time, then it has to be assumed that the system is
no longer operational. The trusted lifebeat mechanism pro-
posed for our visual sensor network is based on this concept
and extends it such that information about the current state
of a camera is included in the lifebeat message. At its core,
this trusted lifebeat is based on TCG’s remote attestation
concept. Contrary to a conventional lifebeat, in our archi-
tecture the lifebeat is not automatically sent by a client (i.e.
a camera) but periodically requested by the control station.
This is done to supply a nonce to ensure freshness of the
platform attestation information contained in the lifebeat.

The information returned by the camera is not limited to
the state of the platform but also includes the value of the
TPM’s internal tick counter. This tick counter is initialized
upon TPM startup with a session nonce TSN that uniquely
identifies the tick session. The tick value TSV is reset to 0
upon TPM startup. The number of µs per tick is given by
the tick rate TRATE . Inclusion of signed tick values in the
periodic lifebeat messages is the foundation for associating
timestamped images with UTC time (see section 5.4).

In detail, the lifebeat mechanism is defined as follows:

1. The control station sends a nonce n and the list of
requested PCRs to a camera. Additionally, the control
station records the current UTC time t0.

If the camera does not respond within a predefined
amount of time, it is considered to be out of service
and should be retrieved for inspection.

2. The camera performs a TPM TickStampBlob opera-
tion resulting in:

T ickStampRes ← TPM TickStampBlobKSIG
(

n||TSNLB ||TSVLB ||TRATELB)

TSVLB is the current tick value, TSNLB identifies the
tick session with a unique nonce and TRATELB is the
number of microseconds per tick.

3. Then, the camera performs a TPM Quote operation
and generates:

QuoteRes ←
TPM QuoteKAIK

(PCRs||T ickStampRes).

Note that T ickStampRes is included in the signature
instead of n supplied by the control station. n however
is implicitly included as it is part of T ickStampRes. In-
cluding T ickStampRes associates tick count and plat-
form state. This provides the verifier with information
about the platform state at the time the TickStamp
operation was performed.

4. QuoteRes, T ickStampRes, the PCR values, the timer
values (TSVLB , TSNLB , TRATELB) and the stored
measurement log are returned to the control station.

5. When the response from the camera is received, the
control station stores the current UTC time as t1.

6. The control station verifies the provided data as fol-
lows:

(a) Verify the signature of T ickStampRes using key
KSIGpub

from the control station database and
check the nonce n.

(b) Verify the signature of QuoteRes using KAIKpub

from the control station database.

(c) Check the returned PCR values together with the
measurement log to verify that the system is in
a state that is compliant with a predefined policy
(i.e. the system image and the executed applica-
tions are known and categorized as uncritical).

7. If the verification is not successful, the camera should
be taken out of service for closer inspection.

8. The time values t0, t1, TSVLB , TSNLB , TRATELB

are stored in the database of the control station. This
associates the tick value TSVLB of the current tick ses-
sion TSNLB with the UTC time interval t0 to t1. For
a more accurate association, average runtimes of indi-
vidual steps of the lifebeat can be taken into account.

The described, remotely triggered trusted lifebeat proce-
dure not necessarily has to be executed in a strict time inter-
val but the control station can send requests at random time
intervals. It however should be ensured that these intervals
do not exceed a previously configured maximum time.

One of the major problems of TC on a generic PC platform
is the verification of PCR values reported by TPM Quote
because there are no limitations on what applications users
are allowed to run. This results in a huge number of pos-
sible PCR configurations. In the context of the proposed
system, this is not an issue because the software base is
relatively small and measurements are only performed for
a limited number of components like the bootloader, the
firmware base image and application blocks.

5.4 Image Signing and Timestamping
An important issue when using cameras e.g. in traffic

surveillance or law enforcement applications is to get assur-
ance where (i.e. by which camera) and when an image was
taken. Having TPMs on the cameras provides basic func-
tionality required for this task. In our setup the first issue
is addressed by signing image data with a non-migratable
signing key that is protected by the TPM of the camera.
As this private key can not be extracted from the TPM,
this signature proves that an image actually originates from
the camera the TPM belongs to. Signing of images on the
cameras is done as follows:

1. Acquire image data img from the camera sensor.

2. Sign image data: SigRes ← TPM SignKSIG
(img)

3. The image signature SigRes and the original image
img are transmitted to the control station. Option-
ally, they can be stored in local memory for later use.
This is useful in applications where e.g. frequent radio
transmissions have to be avoided to save power.

4. To verify the origin of image data, at the control sta-
tion KSIGpub

associated to the camera in question has
to be looked up.

5. If signature verification V erify KSIGpub
(SigRes, img)

succeeds, one has assurance that the data (1) was not
altered and (2) comes from a specific camera as it was
signed with a key protected by the camera’s TPM.

To address the issue when an image was taken, we make
use of the TPM TickStampBlob function. The procedure
is similar to that for image signing. At the control station,
the tick values have to be associated to the universal time
with the help to the tick values obtained from the periodic
lifebeat. Image timestamping is done as follows:

1. Acquire image data img from the camera sensor.

2. Call the TPM TickStampBlob function that signs the
current TPM tick value and the image:

T ickStampRes ← TPM TickStampBlobKSIG
(

TSNimg||TSVimg||TRATEimg||img)

3. T ickStampRes, TSNimg, TSVimg, TRATEimg as well
as img are transferred to the control station or are
stored on the camera for later use.

4. At the control station, KSIGpub
associated with the

camera is retrieved from the database.

5. Verify the timestamp data:

V erify KSIGpub
(T ickStampRes,

TSNimg||TSVimg||TRATEimg||img)

6. From the database, retrieve the most recent lifebeat
that took place before the timestamping of the im-
age. This data includes t0, t1, TSNLB , TSVLB and
TRATELB as described in section 5.3. Lookup is done
with (TSNimg, TSVimg) as key such that TSNimg =
TSNLB , TSVimg > TSVLB . If available, check that
TSNimg = TSNLB+1 and TSVimg < TSVLB+1.

7. Associate the TSVimg time value with UTC time:

t0 + ~x < UTCimg < t1 + ~x

with ~x = (TSVimg − TSVLB) ∗ TRATE [µs]

Assuming that the time ~tQ the TPM requires for the
Quote and the minimal transmission time ~ttx for the
response back to the control station is known, the in-
terval for UTCimg can be narrowed further:

t0 + ~x < UTCimg < t1 + ~x− ~tQ − ~ttx

8. If none of the aforementioned steps failed, one now
knows that the image data (1) was not modified, (2)
comes from a specific camera (signed with a TPM key)
and (3) was taken within a certain, narrow timeframe.

The accuracy of the time UTCimg associated with the
image depends on two major aspects. The first one is the
time required for transmission of the lifebeat request over
the network to the camera and the time for transmitting

the result. The second aspect is the time required for pro-
cessing the lifebeat request on the camera. Processing time
is dominated by the time the TPM requires for the TPM
Quote and TPM TickStampBlob operations. For a given
TPM model, those times can be measured in advance and
taken into account for calculation of the image timestamp.
Network latency, especially in wireless networks, can not
easily be predicted and therefore remains as an uncertainty
factor. Corresponding evaluations of our prototype system
are presented in section 6.

5.5 Encryption of Sensitive Image Regions
Even in case of smart cameras, there are situations where

full images get stored for later use or are sent to the con-
trol station. To achieve privacy of monitored individuals
we not only propose to encrypt selected regions of an im-
age but to specifically do that with a key protected by the
control station’s TPMS . For that purpose the binding keys
KBIND1...Npub

which have been created during camera setup
are used. This ensures that privacy relevant information can
only be decrypted by individuals that have access to the
control station and its TPMS . In our prototype, we have
chosen a rather simple model to identify privacy relevant in-
formation: Any motion detected by the camera is classified
as privacy relevant. After identifying the motion regions,

Figure 5: In the upper row, the full image is dis-
closed while in the middle row the motion regions
are replaced by the results of an edge detection. The
last row shows a series of images where the moving
person is completely removed.

we replace the detected regions with a black box as shown
in the bottom row of figure 5. The original regions (bound-
ing boxes in upper row of figure 5) are encrypted with an
AES session key that gets bound to TPMS using KBIND1.
To provide an intermediate level between revealing all or no
information contained in motion regions, we perform edge
detection. The result of this process (boxes in center row of
figure 5) also is encrypted with an AES session key which
is bound to TPMS with KBIND2. The images where edge
detection was performed, provide operating personnel with
more details about the activity within the motion regions
without revealing too many details. Depending on their se-
curity clearance, operators have knowledge of the usage se-

crets for KBIND1, KBIND2 or none and hence have access
to images with different information. To avoid misuse of
secrets, the session keys could be encrypted using two dif-
ferent binding keys, e.g. KBIND1 and KBIND3 such that
at least two operators have to cooperate to reveal the en-
crypted data. Regardless of the policy, using binding keys
of TPMS to protect the privacy sensitive data guarantees
that this data can only be accessed at the control station.

6. EVALUATION AND DISCUSSION
As embedded computer vision systems have limited com-

puting power, the performance impact of the proposed se-
curity concepts is of high interest. In our system, the two
main aspects are the performance of the TPM and the per-
formance of AES and SHA1 computations which are always
done by the ARM CPU no matter if a hardware or software
TPM is used. In table 2 we compare runtimes for selected
TPM commands executed on hardware and software TPM
implementations. The measurements have been performed
on the parameter block generation layer of the TSS which
means that overhead for communication with higher layers
is not included. For TrouSerS, this overhead was measured
to be 5 to 15ms depending on the command. Table 2 shows
that performance of hardware TPMs strongly depends on
the manufacturer. The Infineon implementation has the
lowest runtimes followed by the Intel TPM that is part of
recent chipsets. In all cases, the software TPM emulator
running on the camera prototype outperforms the hardware
TPMs. For completeness, we not only present runtime mea-
surements for 2048 bit RSA keys but also for 1024 bit keys
showing a clear performance advantage. In our prototype
we however chose to work with 2048 bit keys only. AES and
SHA1 performance is presented in table 3. For AES and
SHA1, data sizes have been chosen to approximately match
those of a JPEG compressed region of interest (8 kB) and
JPEG compressed color images at resolutions of 320x240
(15 kB) and 640x480 (40 kB). Additionally, times are given
for raw RGB images at 320x240 (80 kB).

The motion detection application operates on color im-
ages at a resolution of 320x240 pixels. The procedure is
based on frame differencing followed by binarization, mor-
phological operations and region growing. With this simple,
not optimized implementation 12.5 fps are achieved resulting
in a processing time of 80ms per frame. Based on runtimes
for TPM commands and the vision component, we now are
going to discuss the performance of the proposed TC appli-
cation scenarios.

For the Trusted Lifebeat, the relevant TPM operations
are TPM TickStampBlob, TPM Quote and TPM OIAP for
authorization sessions. Assuming 2048 bit RSA keys, this
results in a runtime of about 165ms using TPM Emulator
on our camera platform. Including TSS overheads, runtime
increases to 180ms. With the fastest hardware TPM (Infi-
neon) runtime would go up to 755ms. As in this case the
TPM commands are executed in parallel to the main pro-
cessor, this would be acceptable. The amount of data trans-
mitted in lifebeat requests and responses is very small. On
our prototype, WiFi transmission time ~ttx for 5 kB of data is
less than 2.5ms. Consequently, the time difference t1− t0 in
the lifebeat is dominated by the TPM operations. Knowing
the times for TPM Quote (~tQ) and TPM TickStampBlob
(~tTS) allows to give the minimal achievable time between t0
and t1 which for our prototype is 2∗~ttx+~tTS+~tQ ≅ 165ms.

Atmel Broadcom Infineon Intel STMicro- TPM TPM

(AT97SC3203) (BCM5755) (SLB9635TT) (ICH10)
electronics Emulator Emulator
(ST19NP18) (Laptop) (Camera)

TPM OIAP 44ms 19.0ms 28.6ms 23.4ms 15.1ms 0.4ms 2.9ms
RSA key size: 2048 bits

TPM Quote 827.1ms 910.6ms 353.5ms fail 948.3ms 15.6ms 78.6ms
TPM TickStampBlob 799.7ms 912.4ms 340.9ms 491.2ms 914.8ms 15.8ms 79.4ms
TPM Sign 792.6ms 911.2ms 340.0ms 474.6ms 901.4ms 15.8ms 77.5ms
TPM Seal 126.0ms 21.9ms 181.9ms 145.2ms 318.1ms 1.2ms 8.2ms
TPM Unseal 855.1ms 909.3ms 344.1ms 559.2ms 1069.7ms 16.0ms 82.5ms
TPM Unbind 827.5ms 880.7ms 335.2ms 516.4ms 996.9ms 15.6ms 80.4ms

RSA key size: 1024 bits
TPM Quote 207.3ms 391.5ms 105.1ms fail 253.1ms 2.8ms 15.8ms
TPM TickStampBlob 190.2ms 390.2ms 96.9ms 146.4ms 218.5ms 2.7ms 16.6ms
TPM Sign 185.5ms 390.3ms 95.5ms 132.8ms 206.6ms 2.6ms 14.7ms
TPM Unbind 208.1ms 390.4ms 88.5ms 135.8ms 257.6ms 2.9ms 17.1ms

Table 2: Runtime measurements for selected TPM commands on different TPM 1.2 chips and the TPM Emu-
lator (Core2 Duo, 1.6GHz and PSC). Where applicable, RSA key sizes of 2048 and 1024 bits were evaluated.
Values are averaged over 10 runs. TPM Quote could not successfully be performed on the Intel TPM.

Data
Size

Runtime
PSC

Laptop
Prototype

SHA1

8 kB 0.4ms 0.05ms
15 kB 0.7ms 0.09ms
40 kB 1.9ms 0.3ms
80 kB 3.8ms 2.1ms

AES 128

8 kB 1.2ms 0.1ms
15 kB 2.2ms 0.2ms
40 kB 6.0ms 0.5ms
80 kB 11.8ms 1.1ms

AES 256

8 kB 1.6ms 0.2ms
15 kB 2.9ms 0.3ms
40 kB 7.6ms 0.7ms
80 kB 15.4ms 1.4ms

Table 3: Average runtimes (10 runs) for SHA1 and
AES (key lengths 128 and 256 bits) on the camera
prototype. For comparison, measurements on a lap-
top (Core2 Duo, 1.6GHz) are given.

The UTC time assigned to a timestamped image is between
t0 and t1 − ~ttx − ~tQ ≅ t1 − 82ms.

Image signing requires the computation of the SHA1 hash
of the image which takes less than 2ms for sizes of 40 kB
and below. The more relevant parts are the TPM Sign /
TPM TickStampBlob and TPM OIAP operations which to-
gether require 82ms (2048 bit RSA key). Combined with
SHA1 computation and TSS overhead, image signing (or
timestamping) requires about 90ms. Signing or timestamp-
ing every frame would result in more than halving the maxi-
mum achievable framerate. With the fastest hardware TPM
(Infineon) the framerate would even decrease to 2 fps. De-
pending on the application, it might however not be required
to sign or timestamp every frame but only selected frames
where a special event was detected. Alternatively, signing
or timestamping could be performed e.g. once per second
for the past n frames where the individual SHA1 sums are
aggregated similar to the PCR extend operation. Both ap-
proaches can help to reduce the performance impact of image
signing.

For encryption of regions of interest, an AES 256 session
key is generated with the TPM’s random number generator.
This key is then protected with one of the public, 2048 bit
RSA binding keys belonging to TPMS . Binding the AES
session key requires 5ms. AES encryption of JPEG com-
pressed regions of interest (8 kB) takes less than 2ms which

is an acceptable performance impact. Session key manage-
ment (e.g. validity periods) depends on a predefined policy.

7. CONCLUSION AND FUTURE WORK
In this work we have explored potential applications of

Trusted Computing in the context of an embedded com-
puter vision system. We have limited our approach to se-
lected aspects including a trusted lifebeat to attest the state
of cameras, signing and timestamping of images as well as
protecting privacy sensitive image data. Compared to ex-
isting security solutions, the addition of a TPM has the
advantage of secure storage for keys used for signing, time-
stamping, lifebeat and platform attestation. In addition to
specifying the involved components and procedures, we did
a prototype implementation on our camera platform. The
conducted performance measurements show that the impact
on overall performance is acceptable for the lifebeat and im-
age encryption. For image signing, the overhead can be
reduced by limiting it to important events or signing groups
of images.

Based on the presented results, we identified a number of
directions for future research. Hardware TPM solutions do
not provide adequate performance (e.g. signing and time-
stamping) to be used in computer vision applications where
timing is critical. A software TPM is much more usable in
this context but still does not provide ideal performance. To
increase performance, one approach is to replace RSA with
ECC as proposed in related work. Alternatively, the DSP
co-processor of our prototype could be used to perform cryp-
tographic or computer vision applications in parallel to the
main processor thereby increasing overall performance. As a
pure software solution, our TPM does not provide security
characteristics similar to an actual hardware implementa-
tion. Approaches how a software TPM can provide security
equivalent to a hardware TPM are under active research.
One alternative that provides both – the security of a hard-
ware TPM and the performance of a software TPM – could
be a hybrid approach where both solutions are combined in
one platform.

In our current work we have only considered trust and
security aspects that involve the control station/system op-
erators and the cameras. Persons monitored by the system
are currently outside this loop. In a future extension we in-
tend to address this issue by adding mechanisms that allow

users to gain insight what applications are running on the
cameras using a mobile handset. This way, users can check
if e.g. their privacy is appropriately protected.

8. ACKNOWLEDGEMENTS
We thank Martin Pirker, Ronald Tögl and Daniel Hein

from the IAIK Trusted Computing Labs/Graz University of
Technology for their assistance with the runtime measure-
ments on Intel, Infineon and STMicroelectronics TPMs.

9. REFERENCES

[1] N. Aaraj, A. Raghunathan, and N. K. Jha. Analysis
and Design of a Hardware/Software Trusted Platform
Module for Embedded Systems. ACM Transactions
Embedded Computing Systems, 8(1):1–31, 2008.

[2] N. Baaziz, N. Lolo, O. Padilla, and F. Petngang.
Security and privacy protection for automated video
surveillance. In Proceedings of the IEEE International
Symposium on Signal Processing and Information
Technology, pages 17–22, 2007.

[3] M. Bramberger, J. Brunner, B. Rinner, and
H. Schwabach. Real-Time Video Analysis on an
Embedded Smart Camera for Traffic Surveillance. In
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 174–181, 2004.

[4] A. Chattopadhyay and T. Boult. PrivacyCam: A
Privacy Preserving Camera Using uCLinux on the
Blackfin DSP. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 1–8, 2007.

[5] K. Dietrich and J. Winter. Implementation Aspects of
Mobile and Embedded Trusted Computing. In Trusted
Computing, Lecture Notes in Computer Science, pages
29–44. Springer, 2009.

[6] A. Dua, N. Bulusu, W. C. Feng, and W. Hu. Towards
Trustworthy Participatory Sensing. In Proceedings of
the Usenix Workshop on Hot Topics in Security
(HotSec), August 2009.

[7] A. Dua, W. Hu, and N. Bulusu. A Trusted Platform
Based Framework for Participatory Sensing. In
Proceedings of the ACM/IEEE International
Conference on Information Processing in Sensor
Networks (IPSN), 2009.

[8] F. Dufaux and T. Ebrahimi. Scrambling for Video
Surveillance with Privacy. In Proceedings Conference
on Computer Vision and Pattern Recognition
Workshop (CVPRW), pages 160–166, 2006.

[9] S. Fleck and W. Strasser. Smart Camera Based
Monitoring System and Its Application to Assisted
Living. Proceedings of the IEEE, 96(10):1698–1714,
2008.

[10] U. Grossmann, E. Berkhan, L. C. Jatoba,
J. Ottenbacher, W. Stork, and K. D. Mueller-Glaser.
Security for Mobile Low Power Nodes in a Personal
Area Network by Means of Trusted Platform Modules.
In Security and Privacy in Ad-hoc and Sensor
Networks, Lecture Notes in Computer Science, pages
172–186. Springer, 2007.

[11] W. Hu, P. Corke, W. C. Shih, and L. Overs. secFleck:
A Public Key Technology Platform for Wireless
Sensor Networks. In Conference On Embedded

Networked Sensor Systems, Lecture Notes in
Computer Science, pages 296–311. Springer, 2009.

[12] IBM. TrouSerS TCG Software Stack.
http://sourceforge.net/projects/trousers/. last
visited: Aug. 2009.

[13] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and
W. Wolf. The Evolution from Single to Pervasive
Smart Cameras. In Proceedings of the Int. Conference
on Distributed Smart Cameras (ICDSC), 2008.

[14] B. Rinner and W. Wolf, editors. Proceedings of the
IEEE: Special Issue on Distributed Smart Cameras,
volume 96, 2008.

[15] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and Implementation of a TCG-Based Integrity
Measurement Architecture. In Proceedings of the 13th
USENIX Security Symposium, pages 223–238, 2004.

[16] W. Schriebl, T. Winkler, A. Starzacher, and
B. Rinner. A Pervasive Smart Camera Network
Architecture applied for Multi-Camera Object
Classification. In Proceedings of the ACM/IEEE
International Conference on Distributed Smart
Cameras (ICDSC), 2009. (to appear).

[17] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L.
Tian, A. Ekin, J. Connell, C. F. Shu, and M. Lu.
Enabling Video Privacy through Computer Vision.
IEEE Security & Privacy Magazine, 3(3):50–57, 2005.

[18] D. N. Serpanos and A. Papalambrou. Security and
Privacy in Distributed Smart Cameras. Proceedings of
the IEEE, 96(10):1678–1687, October 2008.

[19] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and
D. White. Java on the Bare Metal of Wireless Sensor
Devices. In Proceedings of the International
Conference on Virtual Execution Environments, pages
78 – 88, 2006.

[20] M. Strasser and H. Stamer. A Software-Based Trusted
Platform Module Emulator. In Proceedings of the
International Conference on Trusted Computing and
Trust in Information Technologies (TRUST), pages
33–47. Springer, 2008.

[21] S. Tansuriyavong and S. Hanaki. Privacy protection
by concealing persons in circumstantial video image.
In Proceedings of the Workshop on Perceptive User
Interfaces, pages 1–4, 2001.

[22] Trusted Computing Group. TCG Software Stack
(TSS) Specification Version 1.2 Level 1 Errata A.
http://www.trustedcomputinggroup.org/

resources/tcg_software_stack_tss_specification,
March 2007. last visited: Aug. 2009.

[23] Trusted Computing Group. TPM Main Specification
1.2, Lelvel 2, Revision 103.
http://www.trustedcomputinggroup.org/

resources/tpm_main_specification, July 2007. last
visited: Aug. 2009.

[24] T. Winkler and B. Rinner. Pervasive Smart Camera
Networks exploiting heterogeneous wireless Channels.
In Proceedings of the IEEE International Conference
on Pervasive Computing and Communications
(PerCom), pages 296 – 299, March 2009.

[25] J. Winter. Trusted Computing Building Blocks for
Embedded Linux-based ARM TrustZone Platforms. In
Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC), pages 21–30. ACM, 2008.

