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Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic
monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the
capabilities of cameras are constantly increasing. Today’s smart camera systems come with considerable computing power, large
memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras
not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera
system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the
protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype
that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution,
we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of
platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the
implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

1. Introduction and Motivation

Video cameras are present in many parts of our daily lives.
In surveillance applications they are used to monitor train
stations, airports, or public places in cities [1]. Enforcement
applications and traffic monitoring [2] are another applica-
tion area where camera systems are frequently used. In all
those applications multiple, spatially distributed cameras are
used to cover large areas. But the deployment of cameras
is no longer limited to public places. An example where
cameras are installed in private environments is assisted
living. Elderly people are monitored in their homes to detect
unusual behavior such as the collapse of persons [3].

Technologically, camera systems have evolved from ana-
log to fully digital and sometimes even smart systems.
Modern cameras not only deliver videos in digital form,
but are also capable of on-board processing and analysis of
captured images. Together with increasing computing power,
the amount of software running on cameras is also growing.
Nowadays, many smart cameras are equipped with powerful
embedded operating systems such as uClinux. These systems

come with a variety of libraries and many applications and
system services. The emerging field of visual sensor networks
[4] aims to miniaturize cameras and turn them into truly
pervasive sensors [5]. As part of these efforts, many cameras
no longer use wired network connectivity but come with
wireless interfaces which eases deployment significantly. It
is expected that the wireless interfaces and the relatively
large software stack will make smart cameras an attractive
target for attackers. Considering the sensitivity of video
data, appropriate countermeasures must be taken to provide
security guarantees for information that is coming from a
camera.

One way to ensure that sensitive data cannot be accessed
by unauthorized parties, is to remove this data from the video
stream before it leaves the camera. In the computer vision
community, several approaches exist that, for example, detect
and remove people’s faces or vehicle license plates [6–8].
What is rarely discussed, is how such mechanisms can be
integrated with established IT security techniques and the
underlying platform. We, however, argue that any high-
level security and privacy mechanism for visual sensor
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networks is meaningless without taking a holistic approach
towards securing the entire camera device. To fill this
gap, we apply Trusted Computing (TC) techniques and a
dedicated microchip called Trusted Platform Module (TPM).
Being a hardware-based security solution, TC is designed to
achieve higher security than pure software solutions could
do. Furthermore, TPMs are cheap, readily available, and
implement a set of well defined and widely reviewed security
primitives. Alternatives to TC would be hardware security
solutions like ARM TrustZone or TI M-Shield which are
integrated into several embedded processor systems. The
disadvantage of these solutions is that they are proprietary
and only little documentation is publicly available.

To our knowledge, this is the first work that applies and
evaluates TC in embedded smart camera networks. A major
challenge is the proper integration into a camera system
and its computer vision task without considerably reducing
overall system performance. In our previous work [9–11], we
addressed the integrity, authenticity, and confidentiality of
video data. This paper is based on our previous results and
extends them in several ways. We contribute to the state of
the art in at least the following three areas. (1) We discuss the
establishment of the chain of trust on our TrustCAM [10]
prototype. We evaluate the performance impact on system
boot and discuss the resource tradeoff for different root
of trust implementations. (2) We describe a timestamping
mechanism for frame groups that ensures data freshness,
guarantees correct frame order, and allows us to associate
a world time interval with each frame. (3) Reboots of the
camera system and the current system status are reliably
reported with a periodic lifebeat.

The remainder of this paper is organized as follows.
Section 2 discusses the goals and the underlying assumptions
for our work. Since we base our work on Trusted Computing,
Section 3 presents an overview of the fundamental concepts
of this technology. Thereafter, in Section 4 we present
our system architecture including our TrustCAM prototype
platform. In Section 5 we discuss different aspects of the
integration of TC into a camera system. This includes
the establishment of a chain of trust, a trusted lifebeat
as well as image encryption, signing, and timestamping.
Implementation details and evaluation results are presented
in Section 6. In Section 7, we summarize related work on
security in camera systems and applications of Trusted
Computing in embedded systems. Finally, we outline future
work and conclude the article in Section 8.

2. Goals and Assumptions

The primary focus of this work lies on enhancing the security
of an embedded smart camera system to provide certain
guarantees for the delivered video and image data. This
section outlines the goals and the assumptions we made.

2.1. Goals. For the design of our TrustCAM prototype
system, we define the following goals.

Camera Status Monitoring. Since cameras are often
installed in remote locations that are not under full

control of the operators, a mechanism is required
that allows one to reliably check the current status
of a camera. This should include a report about
the executed software as well as the detection of
unscheduled system reboots.

Authenticity of Videos. In many applications such as
traffic monitoring and law enforcement, the origin
of information is important. In visual surveillance,
this is equivalent to knowing which camera captured
a video stream. This can be achieved by explicitly
authenticating the cameras of a network and embed-
ding this information into the video streams.

Freshness of Videos. To prevent replay attacks where
recorded videos are injected into the network to
replace the live video stream, freshness of image
data must be guaranteed. Even more, in many
areas including enforcement applications, evidence
is required when a video sequence was recorded.
Applying timestamps to images delivered by a camera
is a way to satisfy both of these requirements.

Integrity of Videos. Image data coming from a camera
can be intentionally modified by an attacker during
transmission or when stored in a database. Using
checksums and digital signatures, data integrity can
be ensured. An often overlooked issue is that integrity
protection is not only important for single frames but
also for sequences. Simple reordering of images can
substantially change the meaning of a video.

Confidentiality of Videos. It must be assured that no
third party can eavesdrop on sensitive information
that is sent from the cameras to the control station.
Confidentiality must not only be provided for image
and video data transmitted over the network but also
for videos that, for example, are stored on a camera
to be transmitted at a later point in time.

Limited Access to Videos. Access to confidential video
data must be limited to persons with adequate
security clearance. For highly sensitive data, multiple
system operators should be required to cooperate to
reveal the data.

2.2. Assumptions and Scope. This work primarily deals with
security issues related to the embedded camera system itself
and video data delivered by it. We therefore make several
assumptions about other aspects and system components.

Centralized Control. In our concept, cameras are
assumed to be operated and controlled from a central
facility. By definition, this control station is trusted.
Physical and remote access to this facility is limited
to authorized personnel. Appropriate guidelines for
both, the personnel as well as the software compo-
nents are established and frequent auditing is per-
formed. For video streams that are not only viewed
but also stored at the control station, we assume that
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this is done in the same format as they are delivered
by the camera. Integrity and authenticity information
as well as timestamps are not removed from the
stream and confidential video data is not decrypted
before being stored. This ensures that sensitive data is
not only protected during transmission but also when
archived.

Networking. We assume that all cameras that belong
to the network can be accessed in one or more hops
over a wireless connection. In a larger deployment,
topology control and clustering would be required
to ensure scalability. Moreover, we do not address
network security issues including secure routing or
the secure formation of camera clusters.

Physical Attacks. Our main concern are software
attacks on the cameras and the delivered data. Attacks
on camera hardware, including hardware manipula-
tion as well as power and timing analysis [12] are
beyond the scope of this work. We however assume
that, for example, with specifically designed camera
enclosures and circuit boards, a reasonable degree
of resistance against tampering can be achieved. If
a hardware attack involves the reboot of the camera,
this should be detectable for camera operators.

Availability. In some cases, camera systems are
considered as critical infrastructure and therefore
guarantees about the availability of system services
should be provided. Specifically, this also includes
resistance against denial of service attacks. This
would require to monitor and control resource usage
and to validate incoming requests regarding, for
example, their authenticity, integrity, and freshness.
This is currently not addressed in our approach.
Moreover, providing service and availability guar-
antees is inherently difficult when using a wireless
communication channel that is easily jammed.

3. Trusted Computing Overview

Trusted Computing (TC) [13, 14] is an industry initiative
headed by the Trusted Computing Group (TCG) [15]. The
main output of the group is a set of specifications for a
hardware chip—the Trusted Platform Module (TPM) [16]—
and surrounding software infrastructure such as the TCG
Software Stack (TSS) [17]. The TPM, as shown in Figure 1,
is a purely passive device that cannot actively interfere with
the boot process of the host system or prevent the execution
of software. Internally, a TPM typically is implemented as
a microcontroller (execution engine) with accelerators for
RSA and SHA1. Additionally, the TPM provides a random
number generator (RNG) as well as limited amount of
volatile and non-volatile memory. With an opt-in procedure,
users can choose if they want to make use of the TPM chip.
Each TPM is uniquely identified via a special RSA key called
Endorsement Key (EK). This EK is created either by the TPM
manufacturer as part of the fabrication process or by the
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Figure 1: A Trusted Platform Module (TPM) consists of shielded
locations (memory) and protected capabilities which are functions
that operate on shielded locations.

user when taking ownership of the TPM. Either way, the EK
cannot be changed or removed throughout the entire lifetime
of the TPM.

RSA keys can be generated for different purposes such
as data encryption or signing. Upon creation, keys can be
declared migratable or not. While migratable keys can be
transferred to a different TPM, non-migratable keys cannot.
A password called usage secret can be specified upon key
creation. If specified, this password has to be provided every
time the key is used. Likewise, a migration secret can be
specified that must be supplied if the key is to be migrated
to another TPM. Regardless of key type and migratability,
a private TPM key can never be extracted from the chip as
plain text but only in encrypted form. By definition, every
key is required to have a parent key that is used to encrypt the
private key when it has to be swapped out of the TPM due to
limited internal memory. At the root of this key hierarchy is
the Storage Root Key (SRK) which never leaves the TPM.

Aside from basic cryptographic functionality, TC and the
TPM provide the following three roots of trust.

Root of Trust for Measurement (RTM). In TC,
measuring is the process of computing the SHA1
hash of an application binary before it is executed.
Since the TPM is a purely passive device, it cannot
initiate measurements or interfere with the system
boot process. Another trusted building block is
required to perform the initial measurement. On a
PC system, this typically is an immutable part of the
BIOS which measures the next software component
before it passes control to it. Assuming that all
subsequent components proceed the same way, a
sequence of measurements—called chain of trust—
is created going from the BIOS up to the application
level. For Linux systems, the Integrity Measurement
Architecture [18] allows to measure every driver,
library, and application that is loaded or executed
on a system. The measurement values are stored
inside the TPM in secure memory regions called
Platform Configuration Registers (PCRs). As the
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amount of memory inside the TPM is limited, a
special operation called TPM Extend is used when
writing to PCRs:

PCR[i] ←− SHA1(PCR[i] ‖measurement). (1)

With the TPM Extend operation, the current PCR
value is not overwritten but the new measurement is
accumulated with the current PCR value. PCRs are
only reset upon platform reboot. Using only the accu-
mulated PCR values, it is difficult to assert the state of
a system. For a verifier, the individual measurements
representing the software components executed on
the system might be of greater interest. To facilitate
that, the TCG measurement concepts propose the use
of a PCR log that is stored outside the TPM. This
log contains one entry for each measurement that
was extended into a PCR. Using these log entries, a
verifier can reproduce the current PCR values step by
step and thereby get knowledge about the executed
software components. Note that even though the log
is stored outside the TPM, any manipulation can
be easily detected since the reproduced PCR values
would not match those securely stored inside the
TPM.

Root of Trust for Reporting (RTR). Reporting of the
state of a platform is called attestation and is done
with the TPM Quote command. As part of that, PCR
values are signed inside the TPM using a key unique
to that TPM. In theory, this key could be the EK of
the TPM. In practice this is not done due to privacy
reasons. If the EKs were always used for signing
the PCRs, all these signatures could be tracked to
a single TPM and hence a group of persons that
use the machine with this TPM for several different
purposes. Consequently, not directly the EK but alias
keys are used to sign the PCRs. They are called
Attestation Identity Keys (AIKs) and are generated
with the help of an external trusted third party called
PrivacyCA. Details on AIK creation can be found,
for example, in work by Pirker et al. [19]. With
version 1.2 of the TPM specification an additional
mechanism was added to create AIKs. It is called
Direct Anonymous Attestation (DAA) and is based
on group signatures.

Root of Trust for Storage (RTS). The RTS allows one to
use the TPM to securely store data. Binding of data
refers to encrypting data with a TPM key and hence
guaranteeing that the data only is accessible by this
specific TPM instance. Sealing of data allows one to
specify a set of PCR values the data is sealed to. As
with binding, the unsealing can only be done by the
specific TPM instance that holds the private sealing
key. Additionally, the plain text is only released if
the current PCR values match those specified upon
sealing.

Functionality that was added to the TPM specification in
version 1.2 is timestamping and non-volatile (NV) storage
inside the TPM which can be used for custom applications.
One usage of the NV storage is for certificates shipped by the
TPM or platform manufacturers. The remaining available
space can be used for custom applications. Access to NV
storage can be defined to require authorization or be limited
to a certain platform state represented by a set of PCR values.

Timestamping is an important functionality in many
applications. For simplicity and cost reasons, the TPM does
not contain a realtime clock. Instead, a tick counter is
included that is reset to zero upon system bootup. The TPM
specification recommends that the tick counter value TCV is
incremented at least every millisecond. The actual increment
rate is vendor specific and can be queried from the TPM as
the tick rate TRATE. To be able to distinguish different tick
counter sessions resulting from platform reboots, a random
tick session nonce TSN is generated every time the TCV is
reset. Associating the (TSN, TCV) pairs with world time is
left to the application.

4. System Architecture

In our visual sensor network architecture, cameras are
assumed to be spatially distributed to cover a large area.
Network connectivity is provided by wireless communica-
tion technologies. Cameras are controlled and operated from
a central facility subsequently called Control Station (CS).
Each camera can be reached from the CS in one or more
hops. As described in Section 2, we assume that the CS is a
secure and trustworthy facility.

Figure 2 shows a network of X camera nodes and one
central control station. Every camera is equipped with a TPM
chip called TPMC . Likewise, the computing infrastructure of
the CS contains a TPM subsequently referred to as TPMS.
In addition to TPMS, the CS also hosts a database where
cryptographic keys generated during camera setup, and data
received from the cameras as part of periodic lifebeats, are
stored. Moreover, we assume that the CS has a reliable and
accurate time source which is required to associate lifebeat
events and timestamps with world time.

4.1. Camera Setup and Deployment. Before a camera is
deployed, it has to be set up. It is assumed that this setup is
done when the camera is under full control of the operating
personnel. The main part of the setup involves the generation
of TPM keys on the camera and at the control station. All
keys are generated as 2048 bit RSA keys. The following setup
steps and the key generation are done for every camera of the
network.

TPM Ownership. Calling the TPM TakeOwnership
operation of the cameras TPMC sets an owner secret
and generates the Storage Root Key KSRK. The owner
secret is not required during normal operation of the
camera and is set to a random value unique to every
camera. For maintenance operations, the camera’s
owner secret is stored in the database of the control
station.
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Figure 2: A network of TPM-equipped cameras managed by a central control station.

Identity Key Creation. An Attestation Identity Key
serves as an alias for the Endorsement Key (KEK) and
is used during platform attestation. Contrary to a
conventional PC, there are not multiple human users
on a smart camera. The system software running
on the camera takes the role of a single system
user. Moreover, all cameras in the network are
uniquely identified and well known by the operators.
Consequently, there is no need for the anonymity
gained by using multiple AIKs in conjunction with a
PrivacyCA. Therefore, only a single Attestation Iden-
tity Key KAIK is generated during setup that serves for
platform attestation. The public part KAIKpub is stored
in the CS database together with KEKpub .

Signature Key Creation. For signing data such as
events or images delivered by a camera, a nonmi-
gratable singing key KSIG is created with KSRK as its
parent. Being non-migratable ensures that the private
key cannot leave the camera’s TPMC. This provides
assurance that data signed with this particular key
really originates from this specific camera.

Binding Key Creation. To ensure confidentiality of
sensitive data, images sent by the camera to the CS
have to be encrypted. This encryption can be done
for full images or special regions of interest where,
for example, motion or faces have been detected.

To ensure confidentiality, at least one non-migratable
binding key KBIND 1 is created by the control station’s TPMS.
The public part of this key, KBIND 1pub , is exported from TPMS

and stored on the camera. Note that the private part of
KBIND 1 cannot be exported from TPMS and therefore data
encrypted with KBIND 1pub can only be decrypted at the CS
and not by an intermediate attacker who interferes with the
transmission. To decrypt data bound with KBIND 1pub , the
usage secret of the key has to be supplied by the system
operator. To avoid that a single operator who has access to
the control station and knowledge of this usage secret can
decrypt data, additional binding keys KBIND 2 to KBIND N can
be generated. Privacy sensitive data can then be encrypted
with multiple binding keys. Assuming that no single operator
knows all the usage secrets for the binding keys, two or
more operators have to cooperate to decrypt the data. The
N binding keys can also be used to realize different security

Table 1: The cryptographic keys generated during setup of a
single camera. The Control Station and Camera columns denote the
storage location of the keys. Binding keys are generated by TPMS

while all other keys are generated by TPMC . All keys are non-
migratable, 2048 bit RSA keys. The pub subscript denotes the public
RSA key.

Control Station Camera

Endorsement Key KEKpub
KEK

Storage Root Key — KSRK

Attestation Identity Key KAIKpub
KAIK

Signature Key KSIGpub
KSIG

Binding Keys KBIND 1 KBIND 1pub

KBIND 2 KBIND 2pub

...
...

KBIND N KBIND Npub

levels. Data at different abstraction levels (e.g., full images
versus images where people’s faces have been removed versus
textual event descriptions) can be encrypted with different
binding keys. Depending on security clearance, only certain
abstraction levels can be accessed by an operator.

Table 1 summarizes the cryptographic keys generated as
part of the camera setup procedure.

4.2. Key Management Considerations. Regarding key man-
agement, our primary assumption is that keys are distributed
during setup where the system is under full control of the
operating personnel. The proposed system currently sup-
ports no mechanisms for key distribution during runtime.
Considering our application domain we believe that this is
a reasonable assumption. Cameras of a visual surveillance
network are intentionally placed and installed by experts. In
such a relatively static environment there is little need for
dynamic key exchange.

For economic reasons, camera operators nevertheless
might wish to perform initial setup and configuration of
cameras remotely. This can be realized if the camera manu-
facturer separately provides an EK certificate for the camera’s
TPM. The required protocols and public key infrastructure
for such an approach, however, are not considered in this
work.
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Aside from distribution, the management of keys needs
to be considered in case a component of the system has to be
upgraded or exchanged. Our concept proposes to use only
non-migratable TPM keys which means that private keys
cannot be transferred to another TPM. For the cameras this
is clearly a desirable property since it ensures that data signed
with the TPM key KSIG actually comes from the camera the
TPM is part of. In cases where a camera is replaced, we do not
see any need to migrate KSIG from the old to the new camera.
Instead, a new KSIG is created for the new camera. The key
of the old camera however should be deleted by clearing the
TPM to ensure that it cannot be used after the camera has
been taken out of service.

For the control station the situation is different. All
data that was encrypted by the X cameras of the network
with their public binding keys KBIND 1pub to KBIND Npub is
lost if the hardware infrastructure of the control station is
upgraded and this upgrade also includes TPMS. To allow
such maintenance, the binding keys KBIND 1pub to KBIND Npub

could be made migratable. This would allow to transfer the
binding keys to the updated control station hardware. Key
migration can only be performed if the migration password
specified upon key creation is supplied. Clearly, it is critical
that appropriate policies for management of these migration
secrets are applied. These policies must also ensure that the
old TPMS is properly cleared and all its keys are invalidated.

The public binding keys KBIND 1pub to KBIND Npub gen-
erated by TPMS have to be stored on the camera. Since
they are public, no special protection is required because all
an attacker can do with these keys is to encrypt data that
only can be decrypted at the control station. The question
remains where to store these keys on the camera. If the keys
have to be placed in the camera’s file system, this means
that the file system has to be specific for every deployed
camera. To avoid this, we make use of the non-volatile
storage of TPMC to store the public binding keys KBIND 1pub

to KBIND Npub . Additionally, the NV space can be used to store
small amounts of camera-specific configuration data. Access
to the NV space with the binding keys and configuration data
can be limited to a specific system configuration.

4.3. TrustCAM Hard- and Software Prototype. Our custom
TrustCAM prototype system is largely built from commer-
cially available components. TrustCAM is based on the Bea-
gleBoard [20] which has a dual-core processor with an ARM
Cortex A8 CPU clocked at 480 MHz and a TMS320C64x+
digital signal processor running at 360 MHz. The system is
equipped with 256 MB RAM and 256 MB NAND flash. Via
USB, we connect a color SVGA CMOS sensor (Logitech
QuickCam Pro 9000) and an RA-Link RA-2571 802.11b/g
WiFi adapter. An XBee radio provides a second, low-
performance communication channel. Finally, an Atmel
AT97SC3203S—the only commercial TPM designed for
embedded devices—is connected to the mainboard via the
I2C bus. Figure 3 shows a picture of the prototype system.

As operating system we use an ARM Linux system
together with a customized, OMAP-specific kernel. For TPM
access, we use a modified version of the TrouSerS [21]

Figure 3: The TrustCAM prototype with the image sensor, the XBee
radio, and the Atmel I2C TPM at the top level. Behind that are the
processing board and WiFi radio.

TCG software stack where we have replaced the trusted
device driver library (TDDL). Our fully custom TDDL
implementation manages access to the TPM via the I2C bus.

To simplify application development and to allow reuse
of components, we designed a software framework that
supports composition of applications from individual blocks
which are instantiated and interconnected. This approach
follows the concept of modeling the dataflow between
the individual components. Conceptually, every block has
an output memory where its results can be accessed by
subsequent blocks. To maintain consistency of stored data,
access to shared memory is guarded by a lock that is
passed between the producing and consuming block. Blocks
can form chains of arbitrary length where each pair of
blocks is connected by shared memory and a lock. In
our implementation, a processing block is realized as an
individual process expecting well-defined input data and
generating output consumable by subsequent blocks. The
shared memories are implemented as POSIX shared memory
synchronized by an interprocess locking mechanism.

Using separate processes instead of threads for the
processing blocks offers a number of benefits. Blocks can
potentially be implemented in any programming language
as long as there exists shared memory and locking support.
Moreover, separate processes allow to easily implement
watchdog functionality that monitors individual parts of
the processing chain and restarts blocks as required. As
shown in Figure 4, a central entity called NodeManager, is
running on every camera node. The NodeManager is the
only entity that starts processing blocks and forms processing
chains by connecting the individual blocks. A script is used
to specify which blocks have to be started, how they are
interconnected, and what their parameters are. This design
allows the NodeManager to monitor the status of processing
blocks and keep track of consumed and available system
resources to decide if additional applications can be executed.
Furthermore, the NodeManger is responsible for managing
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the locks that guard the shared memory regions. Additional
details and performance evaluations for the camera software
framework are provided in [22].

5. Trusted Computing Integration

The lifecycle of a smart camera starts with its setup and
deployment which we described in Section 4.1. When the
camera boots, the chain of trust has to be established
starting at a root of trust for measurement. In the following
Section 5.1, we present the realization of this boot procedure
for our TrustCAM prototype system. Once the system is
booted, the computer vision tasks are executed. To check
the status of the system and to detect unscheduled system
reboots, the control station sends a periodic lifebeat request
which is described in Section 5.2. If the control station
requests a video stream from the camera, data integrity,
authenticity, and freshness must be ensured. This is dis-
cussed in Section 5.3. Considering the sensitivity of video
data, also the confidentiality of images must be preserved.
Our approach to achieve this, is described in Section 5.4.
Additionally, we demonstrate the realization of two security
levels.

5.1. Trusted Boot and Chain of Trust. As described in
Section 3, on PC systems the Root of Trust for Measurement
(RTM) is typically implemented as an immutable part of
the BIOS. Recent CPUs and chipsets from AMD and Intel
provide an instruction set extension that allows one to
establish a chain of trust after the system has already booted.
This is achieved via a so-called dynamic root of trust.
Since both of these mechanisms are not available on today’s
embedded systems, we discuss how the chain of trust can be
established on an existing embedded device. Our approach is
based on the concepts of a static RTM.

The OMAP 3530 CPU of our system uses a multistage
boot process [23]. On power-up, the system executes the first
bootloader stage located in an internal 32 kB ROM. After
performing basic hardware configuration, the ROM code
creates a list of boot devices. This list is based on six hardware
pins of the CPU called SYS BOOT pins. Upon board design,
a certain boot sequence can be defined by hardwiring these
pins accordingly. By default, the BeagleBoard boot order
is NAND, USB, UART 3, and MMC. With only minor
modifications of the board design, this boot sequence can be
hardwired to, for example, always boot from UART 3.

After the ROM code has prepared the boot device list
based on the SYS BOOT pins, the next bootloader stage is
copied into SRAM. This second bootloader stage is called
X-Loader and it has to be small enough to fit into the
64 kB of the SRAM. The X-Loader then initializes additional
peripherals including the SDRAM controller and then loads
the U-Boot bootloader as the third stage into SDRAM. U-
Boot finally loads and executes the Linux kernel. Figure 5(a)
gives an overview of this default OMAP boot procedure.

To integrate the TPM into the boot process and establish
the chain of trust, modifications to the system are required.
Ideally, the internal ROM of the OMAP should measure the

second bootloader stage (X-Loader) and extend it into one
of the PCRs (Figure 5(b)). To be able to measure X-Loader,
code for the SHA1 hash algorithm needs to be integrated into
the ROM code. This however can be avoided if the SHA1
engine of the TPM is used. This keeps modifications of the
ROM code at a minimum and should allow to integrate the
RTM functionality into the ROM code without exceeding
the 32 kB ROM size. The downside of this approach is that
measuring of X-Loader would take significantly longer com-
pared to a software SHA1 implementation running on the
OMAP CPU. This is primarily due to the low performance
of the TPM and the relatively slow I2C communication.
In Section 6.3 we provide comparison measurements and a
discussion of the performance of the two approaches. Note
that the “ideal” integration of an RTM into our TrustCAM
prototype—or any other OMAP-based embedded system—
would require the cooperation of the CPU manufacturer to
integrate the TPM-enabled ROM code during production.

For the implementation of an RTM for the TrustCAM
prototype we therefore chose a different approach that is
shown in Figure 5(c). The SYS BOOT pins of the OMAP
allow to force the ROM code to request the second boot-
loader stage from UART 3 as a first boot device. This pin
configuration can easily be hardwired in a custom PCB
design. In our design we use a trusted building block which is
connected to the OMAP’s UART 3 and answers the download
request. This could be a one-time programmable memory
together with minimal, additional logic. For our proto-
type, we realized this component with a microcontroller
that downloads the second stage (X-Loader) bootloader.
Once X-Loader has been downloaded, the application on
the microcontroller terminates and no further interaction
between the OMAP CPU and the microcontroller is possible
until the next reboot of the system. Allowing no further
communication between the two systems is important since
it ensures that a potential attacker who gains access to the
system that runs on the OMAP CPU, cannot access or modify
the X-Loader located on the microcontroller. Compared to
modifying the ROM code, our prototype approach provides
no resistance against hardware attacks. With full physical
access to a camera, it is easy to change the boot procedure
and prevent the correct establishment of the chain of trust.
As stated in Section 2, hardware attacks are not in the focus of
our current work. We nevertheless believe that the proposed
mechanism to establish the RTM can still be valuable for
legacy devices especially when combined with the Trusted
Lifebeat described in Section 5.2. Hardware attacks often
cannot be performed on a running system or require a
reboot to become effective. The lifebeat allows operators to
detect such unexpected events and initiate further actions
like retrieval and inspection of the camera.

In the ideal case, the X-Loader code is measured by the
ROM code into PCR 1. For the TrustCAM prototype, the
X-Loader supplied by the microcontroller is not measured.
Once X-Loader is in control, the remaining boot sequence
for the ideal case and the TrustCAM prototype is identical.
If not already done by the ROM code, X-Loader ensures
that the TPM is properly started up. Next, it measures the
U-Boot bootloader into PCR 2 before passing control to it.
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Figure 4: The NodeManager is responsible for creation of processing chains and management of inter-process communication. The output
of individual blocks is stored in shared memory that can be accessed by one or more consumers.

Table 2: TrustCAM PCR usage. Each of the PCRs 1 to 5 only
stores the measurement of a single software component. PCR 6
contains the accumulated measurements of the computer vision
blocks started by the NodeManager.

PCR Measurement Measured by

1 X-Loader OMAP ROM code (ideal model only)

2 U-Boot X-Loader

3 Linux Kernel U-Boot

4 Kernel Parameters U-Boot

5 Root Filesystem U-Boot

6 vision processing blocks NodeManager

U-Boot measures the Linux kernel (PCR 3), its parameters
(PCR 4), and the compressed root filesystem (PCR 5). Once
control is passed to Linux, the root filesystem is mounted
read-only and system startup continues. Note that contrary
to a PC system, it is feasible to measure the entire root file
system at once since typical sizes range from a few to a
few dozens of MB. Keeping the number of measurements
small, considerably simplifies verification of the system state.
A verifier can easily check the overall status without complex
evaluations of PCR logs. To be able to attest which computer
vision applications actually are executed, we extend the
NodeManager introduced in Section 4.3. Being responsible
for starting the computer vision processing blocks, the
NodeManager measures the configuration script and every
block into PCR 6 before they are started. For typical
scenarios, a processing chain is expected to be composed
of no more than ten processing blocks. This keeps the
number of measurements in PCR 6 relatively small. A log
of the individual values that are extended into PCR 6
is kept on a partition separate from the root filesystem.

The full chain of trust of the TrustCAM prototype, including
the measurements done by the NodeManager, is shown
in Figure 5(c). By measuring the vision block separately
from the root filesystem, a verifier cannot only get general
information about the system firmware but also gain insight
which image processing tasks are executed by the camera.
Table 2 summarizes PCR usage of the TrustCAM prototype.

5.2. Trusted Lifebeat. The main purpose of a lifebeat is
to determine the state of a system based on the periodic
transmission of status messages. If a status message is not
received for a predefined amount of time, then it can be
concluded that the system is no longer operational. The
proposed trusted lifebeat mechanism extends this basic
concept by supporting the following properties.

Platform Attestation. Based on TC attestation tech-
niques, the status of the platform is reported to the
system operator. This not only allows one to reliably
check which firmware is running on a camera but also
which computer vision applications are executed.
This is especially important if the NodeManager is
capable of reconfiguring the system dynamically at
runtime.

Reboot Detection. It is important to reliably detect
unintended reboots of a system as these are often
an indicator for attacks. The trusted lifebeat allows
one to securely detect and report reboots of a camera
system. If such a reboot is detected, the camera
should be retrieved for inspection.

World Time Mapping. We use the internal tick counter
of the TPM for secure timestamping of images
delivered by a camera (see Section 5.3 for details). For
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Figure 5: The boot procedures of the unmodified BeagleBoard, a TPM-enabled ideal system, and the TrustCAM prototype. Hardware
components are drawn as gray boxes. Dashed lines represent the measuring of software components and extending these measurements into
the TPM’s PCRs. This is always done before the next component is executed.

that purpose, the tick counter has to be associated
with world time. The trusted lifebeat is used to realize
this mapping of tick counter values to world time.

Contrary to a conventional lifebeat, in our architecture
the lifebeat is not automatically sent by a camera but is
periodically requested by the control station. This is done to
supply a randomly generated nonce to ensure freshness of the
platform attestation information contained in the lifebeat.
The lifebeat response not only includes the attestation result
but also the current TPM tick counter value (TCV), the tick
session nonce (TSN), and the tick rate (TRATE). In detail,
the trusted lifebeat protocol works as follows.

(1) The control station sends a random nonce n and the
list of requested PCRs to a camera. Additionally, the
control station records the current UTC time t0.

If the camera does not respond within a predefined
amount of time, it is considered to be out of service
and should be retrieved for inspection.

(2) The camera performs a TPM TickStampBlob opera-
tion resulting in:

TickStampRes = TPMTickStampBlobKSIG
(n‖

TSNLB‖TCVLB‖TRATELB).
(2)

TCVLB is the current tick value, TSNLB identifies the
tick session with a unique nonce, and TRATELB is the
number of microseconds per tick.

(3) Then, the camera performs a TPM Quote operation
and generates that

QuoteRes = TPM QuoteKAIK

(

PCRs‖

TickStampRes

)

.
(3)
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Note that TickStampRes is included in the signature
instead of the nonce n supplied by the control station.
n however is implicitly included as it is part of
TickStampRes. Including TickStampRes associates tick
count and platform state. This provides the verifier
with information about the platform state at the time
the TickStamp operation was performed.

(4) QuoteRes, TickStampRes, the requested PCR values,
the timer values (TCVLB, TSNLB, TRATELB), and the
stored measurement log for the processing blocks
started by the NodeManager are returned to the
control station.

(5) When the response from the camera is received, the
control station stores the current UTC time as t1.

(6) The control station verifies the provided data as
follows:

(a) Retrieve KSIGpub of the intended camera from
the CS database and verify the signature of
TickStampRes,

VerifyKSIGpub

(

TickStampRes,

n, TCVLB, TSNLB, TRATELB

)

.

(4)

If the signature verification succeeds and the
contained nonce matches the supplied nonce
n, one has assurance that the tick values are
authentic, unmodified, and fresh.

(b) If TSNLB and TSNLB−1 are not identical, this
means that the camera was rebooted and the
TPM has been reset since the last lifebeat event.
If this reboot was not intentionally triggered by
a system operator, it might be an indication for
an attack on the camera. In such a case, the
camera should be retrieved for inspection.

(c) Verify the signature of QuoteRes using KAIKpub

from the CS database. If verification succeeds,
one knows that the provided system state infor-
mation is authentic and unmodified. Freshness
of the attestation data is ensured implicitly via
nonce n included in TickStampRes.

(d) Check the returned PCR values for the boot-
loader(s), the kernel, and the root filesystem
against “known good“ values stored in the
CS database. Evaluate the PCR values that
represents the processing blocks started by the
NodeManager together with the supplied PCR
log. Checks include if all processing blocks, for
example, are known and categorized as uncriti-
cal. Due to the limited number of PCR values
that need to be evaluated, the overall system
status verification is considerably simplified
compared to a general purpose PC system.

(7) If any of the aforementioned checks fail, the camera
should be taken out of service and retrieved for
inspection.

(8) The time values t0 and t1 and the tick counter values
TCVLB, TSNLB, and TRATELB are stored as a single
record in the database of the CS. This associates the
tick value TCVLB of the tick session TSNLB with the
UTC time interval t0 to t1.

The described, remotely triggered trusted lifebeat proce-
dure does not necessarily have to be executed at a fixed time
interval but the control station can send requests at random
intervals. It however should be ensured that these intervals
do not exceed a previously configured maximum time.

5.3. Image Signing and Timestamping. In applications such
as law enforcement or traffic monitoring, it is important to
provide evidence where (i.e., by which camera) and when
an image was taken. Having TPMs on the cameras provides
basic functionality required for this task. Authenticity and
integrity checking of images is realized by signing image data
delivered by a camera using the non-migratable TPM signing
key KSIG. Because this key cannot be used outside the TPM,
the signature proves that an image actually originates from
the camera the TPM belongs to. To answer the question
when an image was taken, we do not perform simple signing
but make use of the TPM TickStampBlob function. This
function not only signs the image data provided by the video
streaming application, but also includes the current TPM
tick counter information in the signature. Image signing and
timestamping is done as follows.

(1) Acquire image data img from the camera sensor.

(2) Call the TPM TickStampBlob function that signs the
current TPM tick session nonce, tick counter value
and the image:

TickStampRes = TPM TickStampBlobKSIG

(

TSNimg

∥

∥

∥

TCVimg

∥

∥

∥TRATEimg

∥

∥

∥SHA1
(

img
)

)

.

(5)

(3) TickStampRes, TSNimg, TCVimg, TRATEimg as well as
img are transferred to the control station or alterna-
tively are stored on the camera for later use.

(4) At the control station, KSIGpub belonging to the
expected camera is retrieved from the database.

(5) Verify the timestamp data:

VerifyKSIGpub

(

TickStampRes, TSNimg

∥

∥

∥TCVimg

∥

∥

∥

TRATEimg

∥

∥

∥SHA1
(

img
)

)

.

(6)

If verification succeeds, integrity and authenticity of
the image data is ensured.

(6) From the CS database, retrieve the most recent
lifebeat that took place before the timestamping
of the image. This data includes t0, t1, TSNLB,
TCVLB, and TRATELB as described in Section 5.2. The
database query is performed using (TSNimg, TCVimg)
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as the key such that TSNimg = TSNLB and TCVimg >
TCVLB. In case of archived video data, also a
subsequent lifebeat LB + 1 might be available in
the database. In that case, it additionally has to be
checked that TSNimg = TSNLB+1 and TCVimg <
TCVLB+1.

(7) Associate the TCVimg time value with UTC time:

t0 + tdiff < timg < t1 + tdiff (7)

with

tdiff =
(

TCVimg − TCVLB

)

∗ TRATE
[

µs
]

. (8)

Knowing the duration tQ the TPM requires for
TPM Quote, one can narrow down the world time interval
the image capture time timg lies in:

t0 + tdiff < timg < t1 + tdiff − tQ. (9)

(8) If none of the aforementioned steps failed, one now
knows that the image data (1) was not modified, (2)
comes from a specific camera (i.e., the camera with
the TPM that protectsKSIG), and (3) was taken within
a certain, narrow timeframe.

Figure 6 provides a graphical overview of the relation-
ship between the last lifebeat event prior to an image
timestamping operation and the image timestamp. The
image timestamp represented by (TSNimg, TCVimg) has to
be associated with a UTC timestamp timg. This UTC time
timg actually lies in an interval with a size determined by the
trusted lifebeat. The size of this interval depends on the time
ttx that is required for transmitting the lifebeat data over the
network and the time that is required to executed the lifebeat
request on the camera. Overall execution time is dominated
by the times the TPM requires for TPM TickStampBlob (tTS)
and TPM Quote (tQ). For a given TPM model, those times
are relatively constant and can be measured in advance to
be taken into account. This has been done in the presented
formula by subtracting the runtime tQ for TPM Quote
from t1. Network latency, especially in wireless networks,
cannot easily be predicted and therefore cannot be treated
in the same way. Practical considerations and evaluations of
image timestamping and the trusted lifebeat are presented in
Section 6.

5.4. Confidentiality of Sensitive Image Data. Image data
that is either stored on a camera for later use or directly
delivered to the control station, requires special protection
to maintain confidentiality. To ensure that image data can
only be accessed at the control station, the binding keys
KBIND 1pub to KBIND Npub are used for encryption. Since the
private keys required for decryption can only be used inside
TPMS, this ensures that access to the control station is an
absolute requirement for accessing the data. The purpose
of using more than one binding key is to support multiple

levels of protection for different abstractions of image data.
For example, by on-board processing a smart camera could
identify sensitive regions such as people’s faces. In a second
processing step the sensitive regions are extracted from the
original images. The remaining background images provide
sufficient information for a many surveillance tasks without
revealing critical personal information. Nevertheless, both
the sensitive regions (IMGSENS) and the blanked background
images, (IMGBLANK) need to be protected against unautho-
rized access.

For that purpose, two 256 bit AES session keys, KAES 1

and KAES 2, are created at application startup. Once the appli-
cation is running, new AES session keys can be generated at
a configurable time interval. The AES session keys are bound
to TPMS with KBIND 1pub and KBIND 2pub :

KAES 1bound = BindKBIND 1pub
(KAES 1). (10)

KAES 2bound = BindKBIND 2pub
(KAES 2). (11)

The sensitive regions and background images are JPEG
compressed. The sensitive parts are encrypted with KAES 1:

IMGSENSENC = EncryptKAES 1 (IMGSENS). (12)

The resulting ciphertext IMGSENSENC and the bound
session key KAES 1bound are embedded into the background
JPEG image as custom EXIF data. This combined image
IMGCOMB is then encrypted with KAES 2:

IMGCOMBENC = EncryptKAES 2 (IMGCOMB). (13)

The encrypted image data IMGCOMBENC and the bound
session key KAES 2bound are sent to the control station. Control
station staff with low security clearance is only in possession
of the usage secret for KBIND 2. This allows access to the
background images which are sufficient for monitoring the
actions of persons. In a special event where, for example, a
law was violated, a supervisor with higher security clearance
and knowledge of the usage secret of KBIND 1 can decrypt
the embedded sensitive regions. In both cases, access to the
control station is an absolute requirement to be able to access
confidential data.

6. Implementation and Evaluation

In this section we discuss selected implementation aspects
together with evaluation results for the individual system
components. After outlining the evaluation setup, we discuss
which performance can be expected from commercially
available TPM implementations. Thereafter, we present sev-
eral performance measurements we did for our TrustCAM
prototype implementation.

6.1. Evaluation Setup. For the evaluation of the proposed
security concepts, we use our TrustCAM prototype described
in Section 4 and a laptop running Linux that acts as control
station. Figure 7 presents an overview of the setup. Com-
munication between TrustCAM and the laptop is performed
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via WiFi. For the TrustCAM prototype, Figure 7 shows all
relevant hard- and software components. At the application
level, the trusted lifebeat and the secure video streaming
application are shown. While the lifebeat is implemented
as a single processing block, the secure video streaming
application consists of five blocks that are interconnected
by shared memory. Even though not explicitly drawn,
access to these shared memory regions is managed by the
NodeManager.

An important component of the TrustCAM framework
is the TPM Manager. It enables us to prioritize access to the
TPM by supporting multiple request queues. Every time a
TPM command is completed, the TPM Manager retrieves the
next request to be processed from the queue with the highest
priority. One request can contain more than one TPM
command to be executed. This ensures that commands that
logically belong together such as the TPM TickStampBlob
and TPM Quote of the trusted lifebeat are executed in
sequence and are not interleaved with other commands.
Internally, this can be realized using exclusive TPM transport
sessions. Queue Q1 shown in Figure 7 has the highest priority
and is used to handle incoming lifebeat requests. The lifebeat
is given the highest priority because it not only reports the
system status but also the current tick counter values. As
described in Section 5.3, these values are used to associate the
timestamp of an image with a world time interval. To keep
this interval as small as possible, lifebeat events get higher
priority than other TPM operations. For our evaluation
setup, we use a second queue Q2 with lower priority than
Q1 to handle the timestamping of outgoing image data. The
TPM Manager currently does not provide any mechanisms
to prevent starvation or guarantee fair TPM access. For the
presented application scenario this however is not an issue
since lifebeat requests only occur with low frequency.

An additional feature of the TPM manager is that,
contrary to the TSS, requests do not have to be blocking.
Once a request was placed in the appropriate queue, the call
returns and the processing block can continue with other
work. When the TPM completes the request, the processing

block is notified via a callback. For TPM access the TPM
Manager relies on the TrouSerS software stack with a custom
TDDL layer for access to the I2C TPM. In a fully optimized
implementation, the TSS could be removed and the TPM
could be accessed directly by the TPM Manager.

6.2. TPM Performance. The TPM specification does not
state any minimal performance requirements for imple-
mentations. Manufacturers therefore are free to find a
tradeoff between performance and costs. Since TPM chips
are intended to be used not only in business but also
consumer products, most manufacturers focus on low
price. Table 3 shows the performance of selected TPM
commands that are relevant for the evaluation scenarios.
The results are based on our previous work [10] and
are extended with measurements for the Atmel I2C TPM.
The TPM OIAP command is used to establish authoriza-
tion sessions. TPM Quote signs the current PCR values
while TPM Sign and TPM TickStampBlob are used for
signing and timestamping. TPM Seal, TPM Unseal, and
TPM Unbind allow to encrypt and decrypt data using TPM
keys. Note that binding is a pure public key operation that
does not require the TPM and therefore is performed in
software. All performance measurements have been done
at the parameter block generation layer of the TSS which
means that no TSS overhead is included in these results. On
TrustCAM, the overhead for the TrouSerS TSS typically is
between 5 and 15 ms depending on the actual command.
For completeness, we measured the performance for both,
2048 and 1024 bit RSA keys where applicable. For our
implementation we only use 2048 bit keys.

The Infineon TPM implementation has the lowest run-
times followed by the Intel TPM which is integrated into
recent chipsets. To illustrate the performance gap between
TPM chips and current embedded computing systems,
Table 3 also includes performance measurements of a pure
software TPM implementation running on the TrustCAM
prototype. These measurements show that the emulator
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Figure 7: The evaluation setup with the TrustCAM prototype and a laptop acting as control station. For the TrustCAM prototype hard-
(gray boxes) and software (white boxes) components are shown. The TPM is attached via the I2C bus. A microcontroller used for trusted
boot is connected to UART 3. The image sensor and WiFi radio are connected via USB. For low-power wireless networking, an XBee radio is
used. The software layers consist of a custom Linux kernel, standard system libraries, a modified TrouSerS TSS, and the TrustCAM software
framework. On top of that, two running applications are shown: the trusted lifebeat and secure video streaming. To ensure prioritization, all
access to the TPM is done via the TPM Manager.

running on TrustCAM is more than 4 times faster than the
fastest TPM from Infineon. The only available TPM that can
be used in an embedded system (Atmel TPM AT97SC3203S
with I2C bus interface) is about 10 times slower than
the software TPM on TrustCAM. Clearly, a software TPM
solution would be attractive from a performance point of
view. It is, however, an open research question if software
TPMs, for example, based on CPU security extensions, can
provide security guarantees similar to those of hardware
TPMs [24]. Despite their performance issues, we therefore
rely on commercially available and well-tested hardware
TPMs.

6.3. Trusted Boot. For the evaluation of trusted boot, two
aspects are of primary interest. The first is the impact on the
total boot time that is introduced by measuring the relevant
system components. The second aspect is the increase in
code size by the addition of TPM support and the SHA1
hash algorithm that is required for doing measurements. To
answer these questions, we prototypically implemented the
trusted boot procedure for our TrustCAM platform.

For X-Loader and U-Boot we use versions from the
BeagleBoard project. We extend both with I2C TPM support
to be able to write the measurements into the PCRs. As our

kernel we use a modified version of Linux 2.6.34 with custom
support for the Atmel I2C TPM chip. The kernel is compiled
as a monolithic binary without loadable modules. Table 4
summarizes the binary sizes of the system components that
are measured during boot. For the implementation of the
“ideal” trusted boot procedures, the ROM code of the OMAP
processor would have to be modified. Even though this is
not possible without support from the manufacturer, we still
provide figures that show the expected increase in code size
for this component. For adding basic TPM support and a
SHA1 software implementation, the expected growth of the
binary would be around 8 kB. This consists of about 1 kB
for the TPM Extend command and about 7 kB for the SHA1
algorithm compiled for the OMAP processor. As a reference
we used the SHA1 implementation of Polar SSL [25] which
is designed for embedded systems. With additional effort,
this size could be reduced further. The TinyECC project
[26], for example, reports a code size of less than 4 kB
for SHA1 implementations on certain sensor motes. The
alternative to using a software SHA1 implementation is to
use the SHA1 engine of the TPM. In this case, the ROM code
would only grow by 1.1 kB. While code size is significantly
smaller, performance of the TPM’s SHA1 engine is a lot lower
compared to the SHA1 implementation running on OMAP.
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Table 3: Runtime measurements for selected TPM commands on different TPM 1.2 chips and the TPM Emulator on TrustCAM. Where
applicable, RSA key sizes of 2048 and 1024 bits were evaluated. Values are averaged over 10 runs.

Atmel Atmel Broadcom Infineon Intel STMicro- TPM

(AT97SC3203) (AT97SC3203S, (BCM5755) (SLB9635TT) (ICH10) electronics Emulator

I2C bus) (ST19NP18) (TrustCAM)

TPM OIAP 44 ms 47 ms 19.0 ms 28.6 ms 23.4 ms 15.1 ms 2.9 ms

RSA key size: 2048 bits

TPM Quote 827.1 ms 836.6 ms 910.6 ms 353.5 ms 496.4 ms 948.3 ms 78.6 ms

TPM TickStampBlob 799.7 ms 809.3 ms 912.4 ms 340.9 ms 491.2 ms 914.8 ms 79.4 ms

TPM Sign 792.6 ms 804.4 ms 911.2 ms 340.0 ms 474.6 ms 901.4 ms 77.5 ms

TPM Seal 126.0 ms 135.2 ms 21.9 ms 181.9 ms 145.2 ms 318.1 ms 8.2 ms

TPM Unseal 855.1 ms 864.4 ms 909.3 ms 344.1 ms 559.2 ms 1069.7 ms 82.5 ms

TPM Unbind 827.5 ms 837.3 ms 880.7 ms 335.2 ms 516.4 ms 996.9 ms 80.4 ms

RSA key size: 1024 bits

TPM Quote 207.3 ms 216.7 ms 391.5 ms 105.1 ms 152.9 ms 253.1 ms 15.8 ms

TPM TickStampBlob 190.2 ms 199.4 ms 390.2 ms 96.9 ms 146.4 ms 218.5 ms 16.6 ms

TPM Sign 185.5 ms 194.8 ms 390.3 ms 95.5 ms 132.8 ms 206.6 ms 14.7 ms

TPM Unbind 208.1 ms 217.6 ms 390.4 ms 88.5 ms 135.8 ms 257.6 ms 17.1 ms

With the TPM, hashing of the next bootloader stage (X-
Loader) takes 5.9 s while the software SHA1 implementation
only takes 1.6 ms. The reason for this huge difference is
not only the slow TPM but, to a large part, also the slow
I2C communication link. The TPM can only operate in I2C
standard mode which is limited to 100 kbit/s. The 28.5 kB
of X-Loader would need about 2.3 s to transmit. Due to
implementation limitations, our I2C bus is only running
at half speed which means that transmission time doubles
to 4.6 s. The resulting difference of 1.3 s to the measured
total runtime of 5.9 s, is consumed by the TPM for the
actual SHA1 hashing and I2C overheads (e.g., acknowledge
messages).

For X-Loader, that has to fit into the 64 kB SRAM size,
limitations are not that critical. By adding TPM and software
SHA1 support, its size increases by 7.8 kB to a total of 28.5 kB.
X-Loader then measures the next bootloader stage (U-
Boot) which takes 8.3 ms. U-Boot only requires extensions
for TPM support since it already comes with a SHA1
implementation. U-Boot measures the Linux kernel, the
kernel parameters, and the root filesystem. This takes 96 ms,
0.3 ms, and 1157.4 ms, respectively. Assuming that an SHA1
software implementation can be fitted into the ROM code,
the total increase in boot time would be 1.3 s. If however
the TPM has to be used for SHA1 hashing, boot time would
increase by 7.1 s. If the maximum I2C communication speed
of 100 kbit/s can be achieved, the impact on boot time still
would be about 4.8 s. It must be noted that other TPM
commands require a lot less data transmission over the I2C
bus. For most TPM commands, only a few hundred bytes are
exchanged and therefore transmission times are not critical.

Contrary to the ideal case where ROM code can be
modified, for the TrustCAM prototype we use a slightly
different boot procedure. As described in Section 5.1, we rely
on a microcontroller that acts as a trusted building block. It
downloads the X-Loader bootloader via UART3 to the main

system. This download is done with 115200 bps which results
in a download time of 2.4 s for the 28.5 kB of the X-Loader
binary. Compared to the ideal boot process, the X-Loader
binary is not measured and extended into PCR 1. For the
prototype system with X-Loader downloaded via the serial
connection, the total impact of trusted boot on system boot
time of the prototype system is 3.7 s.

Clearly it should be the goal to prolong system bootup
as little as possible. An overhead of a few seconds however
is acceptable for a camera system that is not intended to be
frequently rebooted.

6.4. Trusted Lifebeat. The TPM commands that are involved
in the trusted lifebeat are TPM Quote and TPM TickStamp-
Blob. Assuming 2048 bit RSA keys, this results in a combined
runtime of about 1.7 s on the TrustCAM prototype. Shorter
runtimes, as achieved by TPMs of other manufacturers,
would be an advantage since this would allow to keep
the world time intervals associated with the TPM tick
counter smaller. For the same reason, it should be ensured
that lifebeat requests are processed with the smallest delay
possible. This is achieved via the priority queues of the TPM
manager described in Section 5.2.

World time that is associated with a lifebeat event falls
between t0 recorded at the control station when lifebeat
request is sent and t1 that is recorded when the response is
received. Since the amount of data transmitted in the request
and response is very small (a few hundred bytes), the lifebeat
runtime t0 to t1 is dominated by the TPM operations. The
runtimes for the TPM commands TPM TickStampBlob (tTS)
and TPM Quote (tQ) are relatively constant. As discussed
in Section 5.3, this allows us to subtract the runtime tQ for
TPM Quote from the total lifebeat runtime and to estimate
the minimal achievable time between t0 and t1. For our
prototype, this is 2∗ ttx + tTS ≤ 1.2 s. Even though the lifebeat
is given priority over other TPM commands, it is still possible
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Table 4: Total binary sizes of the system components together with measurement runtimes (average over 100 runs) using the SHA1 hash
algorithm. The increase of binary size over for the additional measurement and TPM code is given in brackets. The OMAP internal ROM
code is less than 32 kB but the exact size is unknown. To measure the second bootloader stage (X-Loader), the ROM code could be extended
with a software SHA1 implementation running on the OMAP CPU or it could use the TPM’s SHA1 engine. Following the boot sequence
outlined in Section 5.1, components are measured by the previous bootloader stage before control is passed on. The OMAP ROM code acts
as root of trust and is not measured.

Binary Size Measurement Runtime

ROM Code plus SHA1 on OMAP and TPM Extend ≤32. 0 kB (+ 8.0 kB) n/a

ROM Code plus SHA1 on TPM and TPM Extend ≤32.0kB(+ 1. 1 kB) n/a

X-Loader 1.4.2 plus SHA1 and TPM Extend 28.5 kB(+ 7. 8 kB) 1.6 ms (OMAP)

5869.6 ms (TPM)

U-Boot 2009.06 plus TPM Extend 177. 0 kB(+ 0. 9 kB) 8.3 ms

Linux Kernel 2.6.34 2. 1 MB 96.0 ms

Kernel Parameters 1. 0 kB 0.3 ms

Root Filesystem 26. 2 MB 1157. 4 ms

Total n/a 1263.6 ms (OMAP)

7131.6 ms (TPM)

that an image timestamping request was sent to the TPM
immediately before the lifebeat request was received. In such
a case, the world time interval associated with the lifebeat
would extend to 2 ∗ ttx + 2 ∗ tTS. Including all overheads,
typical time intervals between t0 and t1 for our prototype are
between 1.5 and 2 s.

It is noteworthy that the trusted lifebeat is a vital system
component which has to be operational even in situations
where no video data is streamed and the WiFi radio is turned
off to conserve power. To facilitate that, our prototype allows
to exchange the lifebeat messages via the low-power XBee
radio.

6.5. Secure Video Streaming. The secure video streaming
application is designed to ensure authenticity, integrity,
freshness, and confidentiality for streamed images and
videos. The implementation of the encryption block shown
in Figure 7, follows the concepts presented in Section 5.4.
For evaluation purposes we use sensitive regions of fixed
size (100 × 100 pixels) that are extracted from the images.
Such a JPEG compressed sensitive region typically consumes
around 2.5 kB. As shown in Table 5, AES 256 encryption of
this data takes less than 1 ms. Depending on resolution and
color depth, the remaining, JPEG compressed background
typically consumes between 12 kB (320× 240, grayscale) and
40 kB (640×480, RGB). Encryption of the background image
together with the already encrypted sensitive region that is
embedded as custom EXIF data takes between 3 ms and 8 ms.
Table 5 provides additional performance figures for AES256
on TrustCAM. Binding of the AES session keys using the
public binding keys of TPMS takes about 5 ms and has to be
done only at startup or when new session keys are created.
These figures show that the overhead introduced by data
encryption is relatively small and should be acceptable for
most applications. Table 6 shows the overall performance of
the camera system in terms of achieved frames per second.
Specifically, the encryption columns shows the achieved
framerates when streaming encrypted images. Comparing

Table 5: Average runtimes (100 runs) for SHA1 and AES 256 on the
TrustCAM prototype. For comparison, measurements on a laptop
(Core2 Duo, 1.6 GHz) are given.

Data Size Runtime

TrustCAM Laptop

SHA1 8 kB 0.4 ms 0.05 ms

15 kB 0.7 ms 0.09 ms

40 kB 1.9 ms 0.3 ms

80 kB 3.8 ms 2.1 ms

AES 256 8 kB 1.6 ms 0.2 ms

15 kB 2.9 ms 0.3 ms

40 kB 7.6 ms 0.7 ms

80 kB 15.4 ms 1.4 ms

these figures with the plain streaming case where images
are compressed and directly streamed, the impact on the
framerate is between 0.3 and 1.5 frames.

This picture changes however, when considering image
signing and timestamping as described in Section 5.3. Table 3
shows the runtime for the TPM TickStampBlob operation
on the Atmel I2C TPM is about 800 ms without overheads.
This runtime clearly makes it impossible to sign and
timestamp every single image delivered by the camera since
the effective framerate would be reduced to little more than
one frame per second.

We consequently adapt the image timestamping and
signing procedure such that sequences of images instead
of individual images are timestamped. We accumulate the
hashes for a group of F frames in a way similar to the TPM’s
PCR Extend operation:

AccSumFrm 1 ...F = SHA1
(

AccSumFrm 1 ...(F−1)

∥

∥

∥

SHA1(Frmcurrent)
)

.
(14)
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Table 6: Framerates (avg. over 1000 frames) for different types of video streaming from TrustCAM to the control station via WiFi. The
sensor delivers YUYV images at either 320 × 240 or 640 × 480 pixels. Optionally, they are converted to grayscale. Plain streaming shows
the performance when images are JPEG compressed and streamed. For timestamping, image groups are timestamped by the TPM. The
encryption column shows the achieved framerates if sensitive regions (100 × 100 pixels) and the remaining background are encrypted
before streaming. The last column presents the frames rates when doing both, encryption and timestamping.

Resolution Color Format Plain Streaming Timestamping Encryption Encryption + Timestamping

320× 240 Gray 24.6 fps 24.4 fps 24.3 fps 24.1 fps

RGB24 23.8 fps 23.6 fps 22.3 fps 21.5 fps

640× 480 Gray 12.8 fps 12.5 fps 11.8 fps 11.0 fps

RGB24 6.5 fps 6.3 fps 5.9 fps 5.7 fps

The accumulated hash for F frames is signed by TPMC:

TickStampRes = TPM TickStampBlobKSIG (TSN ‖

TVC‖TRATE‖AccSumFrm 1 ...F

)

.
(15)

As shown in Table 5, SHA1 hashing of typical image sizes
takes less than 2 ms. However, TPM timestamping of the
hash takes a significant amount of time. We therefore do
not wait for the TPM operation to complete but continue
with the processing and streaming of video data. Specifically,
the accumulation of the hash sum for the next group of
images (beginning at frame F + 1) is started. This continuous
operation is possible since TPM commands are executed in
parallel to the main processor. Once the TPM completes the
timestamping command, the processing block is notified by
the TPM Manager and the timestamp is retrieved. Together
with the start and end indices of the group which are also
included in the signature, the timestamp is attached to the
next streamed frame. At this point, the accumulated hash
sum of the next image group is sent to the TPM Manager for
timestamping. The size of the image groups is automatically
adapted to the current load of the system.

The presented approach allows us to overcome the
problem of low TPM performance. By timestamping groups
of frames instead of individual images, we can deliver a video
stream without interruptions from TPM operations. At the
same time, the security of the system is not reduced. For
videos that are stored and viewed at a later point in time,
integrity of images can easily be verified. For live video,
integrity guarantees for the currently displayed frame cannot
be given since the signature for the current image group is
delivered at a later point in time. If there are no pending
lifebeat requests, this delay typically is less than 1 s. Providing
integrity and authenticity information for a live video stream
with a delay of 1 s should be sufficient for most surveillance
applications.

Note that our approach of signing groups of images also
solves a problem that is introduced when using advanced
video codecs such as MPEG2 or H.264. Contrary to the
currently used Motion-JPEG, these codecs do not deliver full
images for every video frame but differential information
relative to one or more base frames. To provide meaningful
signatures for such video data, it is necessary to sign groups
of pictures including the base frames and the differential
information instead of single frames. This means that our

approach is directly applicable for such advanced video
codecs.

Another issue is that not every frame is associated with
a TPM tick counter value at the time it is captured. The tick
counter value of the group signature effectively corresponds
to the capture time of the last frame of the group. This
can be compensated, if the framerate at which the camera
captures images is known. It is then possible to assign a
world time interval not only to the last frame of a group but
again to every frame. The order of frames within a group is
guaranteed via the accumulated, signed hash sum. Correct
group ordering is achieved via the group timestamps.

Aside from the already mentioned properties, the pro-
posed approach of signing image groups also has an obvious
disadvantage. If a frame of a group is lost, damaged, or
manipulated, the integrity and authenticity of the entire
group cannot be verified and the recording time cannot be
determined.

As can be seen from Table 6, the performance impact of
timestamping on the achieved framerates is very small. We
also evaluated the framerates when performing both, image
encryption and timestamping. The reduction of framerates
compared to simple streaming is between 0.5 and 2.3 fps.
For larger image sizes a considerable performance reduction
can be seen. This does not result from low encryption
performance but from JPEG compression. JPEG encoding of
a 640 × 480 color image takes about 130 ms on TrustCAM.
Further performance details are provided in [9].

For the verification of the image signature, the control
station computes the hash sum SHA1(Frmcurrent) for every
incoming frame and stores it in a local cache. Additionally,
incoming frames are checked for an attached image group
signature TickStampRes. As the attached data also contains
the start and end indices of the image group, the control
station now computes the expected accumulated hash sum
ExpAccSumFrm1 ...F for the F frames indicated by the start and
end indices. It then loads the public signing key KSIG that
belongs to the expected camera from its local database and
verifies the signature of the image group:

VerifyKSIGpub

(

Tick StampRes, ExpAccSumFrm1 ...F

)

. (16)

If verification is successful, one has assurance that (1)
the images of the group were not modified and (2) the
images of the group come from the expected camera.
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The image capture time can be computed based on the
lifebeat timestamps as previously described.

7. Related Work

In this section we discuss related work that addresses security
questions in the context of camera systems. Additionally,
we cover related research on Trusted Computing and its
applications in embedded systems.

7.1. Security in Camera Systems. Serpanos and Papalambrou
[27] provide an extensive discussion of security- and privacy-
related issues in smart camera networks. They discuss the
need for confidentiality, integrity, and freshness of data
transmitted between nodes. In cases where images are
transmitted, privacy of observed persons is a critical issue
as it not only involves protection of sensitive information
against external attackers but also against legitimate system
operators. To achieve this goal, relevant parts of the images
need to be recognized and encrypted.

Senior et al. [28] discuss critical aspects of a secure
surveillance system including what data is available and
in what form (e.g., raw images versus metadata), who
has access to data and in what form (e.g., plain versus
encrypted), and how long it is stored. User privacy is a major
concern that is addressed in the proposed system concept.
Incoming videos are analyzed and sensitive information is
extracted. The extracted data is rerendered and multiple
streams with different levels of data abstraction are created.
By encryption of streams, multilevel access authorization is
realized. The authors suggest that video analysis, processing,
and encryption could either be done by a dedicated privacy
console or directly by the cameras.

The work of Friedman [29] targets the questions of
authenticity and integrity of images taken with a digital still
image camera. Specifically, he aims at restoring credibility
of photographic images by extending the microprocessor
embedded in a digital camera with a unique, private
signature key. This key is used to sign images before they
are stored on mass storage. The public key required for
verification is assumed to be made available by the camera
manufacturer. Friedman suggests that the software required
for signature verification should be made publicly available.
Even though there exists no known implementation of the
proposed concepts, this work can be seen as one of the
earliest approaches towards a trustworthy, digital camera
system.

Cavallaro [1] argues that digitalization of video surveil-
lance introduces new privacy threats. Therefore, personal
and behavioral data should be separated directly on the
camera. While system operators only get access to behavioral
data, a separate stream containing personal data is made
available to law enforcement authorities. A benefit of this
strict separation is prevention of operator misuse. Possible
implementation approaches are not discussed in this work.
To preserve privacy of monitored people, the system by Schiff
et al. [7] called Respectful Cameras, automatically detects
and blanks people’s faces in captured images. Dufaux and

Ebrahimi [30] propose a slightly different approach which
does not remove but scrambles sensitive image regions. After
detection of relevant areas, images are transformed using
DCT. The signs of the coefficient of sensitive regions are then
flipped pseudorandomly. The seed for the pseudorandom
number generator is encrypted. Decryption is only possible
for persons who are in possession of the corresponding
decryption key. According to the authors, main benefits are
minimal performance impact and that video streams with
scrambled regions can still be viewed with standard players.

Boult [31] argues that many existing approaches are
targeted at removing privacy sensitive image data without
providing mechanisms to reconstruct the original image.
Based on this observation, he proposes a system concept
called PICO that relies on cryptography to protect selected
image regions such as faces. This enables the monitoring
of person’s actions without revealing his/her identity. The
faces are only decrypted if, for example, a crime was
committed by the person. Encryption is supposed to be done
as part of image compression and uses a combination of
symmetric and asymmetric cryptography. Additionally, it is
suggested to compute checksums of frames or subsequences
to ensure data integrity. In related work, Chattopadhyay and
Boult present PrivacyCam [8], a camera system based on a
Blackfin DSP clocked at 400 MHz, 32 MB of SDRAM and an
Omnivision OV7660 color CMOS sensor. uClinux is used as
operating system. Regions of interest are identified based on
a background subtraction model and resulting regions are
encrypted using an AES session key.

Quisquater et al. [32] propose an approach for integrity
protection and authentication for digital video stored on tape
in the DV format. They use SHA1 to compute the hash of the
image. To be less sensitive to transmission or tape errors, the
authors suggest to divide images into blocks that are hashed
separately. Authenticity is ensured by signing the hash values
of images. The hash of the previous image is also included in
the signature to maintain correct ordering of video frames.

Digital watermarks are another technique to secure digi-
tal media content. A watermark is a signal that is embedded
into digital data that can later be detected, extracted, and
analyzed by a verifier. According to Memon and Wong [33],
a watermark can serve several different purposes. This can be
proof of ownership where a private key is used to generate
the watermark. Other applications are authentication and
integrity protection, usage control, and content protection.
Depending on the application domain, watermarks can be
visible or invisible. An example where watermarking is
used as part of a digital rights management system for a
secure, embedded camera is presented by Mohanty [34].
He describes a secure digital camera system that is able to
provide integrity, authenticity, and ownership guarantees for
digital video content. This is achieved using a combination
of watermarking and encryption techniques. Due to the high
computational effort, a custom hardware prototype based on
an FPGA is used to meet the realtime requirements.

7.2. Embedded Trusted Computing. The Low Pin Count
(LPC) bus that is used to connect TPMs to the PC platform,
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typically is not available on embedded systems. Some
manufacturers additionally equip their TPMs with a serial,
two-wire interface making them suitable for embedded
systems. Grossmann et al. [35] demonstrate the use of
an Atmel AT97SC3203S TPM together with an MSP430
microcontroller from Texas Instruments in the context of
a teletherapeutic application. In this scenario, the software
state of the embedded device is attested using the TPM before
sensitive information is transmitted. The authors also give
measurement results for runtime and energy consumption
for selected TPM commands. For example, the TPM Quote
operation was measured to take about 800 ms during which
a current of 39 mA (@ 3.3 V) is drawn.

For secFleck, Hu et al. [36] mount an Atmel I2C TPM
on an extension board for the Fleck mote platform which
is powered by an Atmel Atmega128 running at 8 MHz.
Apparently, the TPM is not used for platform attestation
but only as random number generator, for RSA en- and
decryption and signature creation and verification. secFleck
is also used by Dua et al. [37] to enhance security of a
participatory sensing application where users sense their
local environment and make these measurements available
to other users. The TPM is used to attest the integrity of
the users’ platforms. In the proposed protocol, the PCRs
are signed directly using the EK which violates the TPM
specification and therefore should not be possible with a
compliant TPM chip. In another work by the same authors
[38], a similar approach for trustworthy sensing is discussed.
A peripheral platform equipped with a TPM, sensors,
and bluetooth is used for sensing. A second platform, for
example, a mobile phone, can query the device via bluetooth
and in turn receives sensed data signed by the peripherals
TPM. The authors again claim to use the EK for attestation
which is not permitted by the TPM specification.

Aaraj et al. [39] evaluate the performance of a pure
software TPM on an embedded platform (Xscale PXA-
250 at 400 MHz with 32 MB RAM). They present runtime
measurements for TPM commands including TPM Quote
(1239 ms with a 2048 bit RSA key) and TPM Sign (902 ms,
2048 bit RSA key). Based on these results, the authors
replaced RSA with elliptic curve cryptography (ECC) which
reduced the time for TPM Quote to 381 ms (224 bit key)
and TPM Sign to 191 ms (224 bit key). On average, execution
time was reduced by a factor of 6.5. ECC is not supported by
the current TPM specification but may be adopted in future
versions. On another system (Xtensa CPU @320 Mhz) with
partially customizable hardware, the authors implemented
dedicated CPU instructions to accelerate ECC. With these
hardware optimizations, runtimes for TPM Quote could be
reduced to 84.154 ms on a unicore and 30.70 ms on a hexa-
core system.

Dietrich and Winter [24, 40] also investigate the pos-
sibility of using software-based TPM implementations for
embedded systems. Many embedded systems already come
with integrated security functionality such as ARM Trust-
Zone that can be used to develop software TPM solutions.
The same authors explore the use of Smart Cards or
SIM cards as found in mobile phones to implement TPM
functionality. Research on software TPM implementations is

still in early stages but preliminary results suggest that they
might be able to provide security levels similar to those of
hardware TPMs.

Reconfigurable hardware such as FPGAs is commonly
used in embedded systems. In such a system, not only the
software but also the hardware needs to be included in
platform attestation. Glas et al. [41, 42] integrate a TPM with
an FPGA system. They introduce a component called Trust-
Block that is responsible for securely booting the system.
The FPGA itself is split into a user-programmable part and
a static section. All reconfiguration of the FPGA has to be
performed via functionality provided by this static section. It
is also responsible for measuring the new system configura-
tion into the TPM. Eisenbarth et al. [43] also integrate TC
into an FPGA system but they do not use a dedicated TPM
chip but integrate the TPM functionality as custom logic into
the FPGA. Using a so-called Bitstream Trust Engine, they
realize authenticity and integrity guarantees. Additionally,
they also measure the TPM’s implementation netlist. The
main advantages of this approach are that the TPM itself
becomes part of the chain of trust, TPM functionality can
be easily updated and extended and TPM performance can
be increased. Schelleckens et al. [44] also aim to integrate
TPM functionality into FPGA-based systems. Contrary to
other approaches, they do not rely on additional hardware
or hardware modifications to realizes TPM functionality
but use physical unclonable functions. These are unique
characteristics inherent to all ICs including SRAM-based
FPGAs. These functions can be used to realize secure key
storage which in turn provides the foundation for a TPM
implementation.

8. Conclusions and Future Work

In this paper we presented the prototype of an embedded,
trustworthy smart camera system that is based on Trusted
Computing technology. Using the capabilities of the Trusted
Platform Module, we have realized several security properties
for image and video data delivered by a camera system.
Specifically, we ensure integrity, authenticity, freshness, and
confidentiality. Furthermore we discussed the implementa-
tion of a chain of trust for our TrustCAM prototype and a
trusted lifebeat that allows one to check the platform status
and detect system reboots.

As shown in our evaluations, the performance of com-
mercial TPMs falls behind the requirements of an embedded
camera system with its realtime image processing and
streaming capabilities. We, however, demonstrated that these
limitations not necessarily have to impact overall system
performance if the TPM functions are properly integrated
into the computer vision tasks.

We believe that security of video surveillance infrastruc-
ture is a critical issue that has not been adequately addressed
so far. We see this work as a first step towards filling the
gap between approaches from the computer vision and the
IT security communities. Trusted Computing can become
a major building block in a joint effort towards a holistic
security concept for trustworthy camera systems.
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Nevertheless, a number of open issues remain to be
addressed in future work. For trusted boot we use an
addition trusted building block as initial root of trust for
measurement. Many ARM processors come with on-board
security extensions such as ARM TrustZone or TI M-Shield.
Potentially, they can be used to implement such a root of
trust but both specifications are proprietary and not publicly
available. Another direction for future investigations is the
Mobile Trusted Module (MTM) [45]. The MTM is specified
by the TCG and is a variant of the standard TPM. It adds
secure boot functionality which, contrary to trusted boot,
not only allows one to measure the system status but also
can prevent a system from booting if the software stack was
modified.

Currently, our system is relatively static. We do not
include features such as over-the-air updates of camera soft-
ware. Furthermore, the assumption of a single, centralized
control station might not be realistic for larger deployments.
Especially the trusted lifebeat is expected to suffer from
scalability issues. To reduce the load on the CS, cameras
could be clustered. The status of cameras acting as cluster
heads is checked directly by the control station. The cluster
heads then check the status of their cluster members. The
aggregated results for a cluster are reported to the CS.

In our assumptions in Section 2 we postulate that the
control station is secure and trustworthy. Future work will
have to elaborate the security requirements for the CS. These
include topics such as checking CS requests sent to the
cameras for authenticity, integrity and freshness, and reliable
safeguards against operator misuse.
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Preliminaryやcallやforやpapers
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Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
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